## The Impact of Network Variabilities on TCP Clocking Schemes

<u>Kuan-Ta Chen</u>, Polly Huang, Chun-Ying Huang, Chin-Laung Lei

Department of Electrical Engineering National Taiwan University

Global Internet 2005

Mar. 19, 2005

#### Outline

#### Motivation

#### Why pacing could be more bursty?

The impact of network variabilities on the behavior of TCP clocking schemes

#### Conclusion

### **TCP Clocking Schemes**

Self-clocking (a.k.a. ack-clocking)

 ACKs "self-clock" the data to the rate of the bottleneck link

Pacing

- resembles to a rate control mechanism but preserves the concept of window control
- a common implementation: release a window of packets evenly within each round-trip time
- In intuition, pacing will result in more smooth traffic, and smooth traffic will lead to better performance, however, ...

#### Motivation

- Aggarwal, Savage, Anderson found pacing often results in *lower throughput* and *higher latency*.
- We are motivated to evaluate ack-clocking and pacing schemes with more fundamental behavioral analysis, especially on the aspect of traffic burstiness.

### Our main results

- Pacing traffic could be more bursty than ack-clocking traffic.
- The comparative traffic burstiness of TCP clocking schemes are largely affected by network path properties
  - whether the round-trip times (RTT) are the same
  - the number of flows
- Pacing is generally <u>less bursty</u> than ack-clocking with realistic settings, i.e., heterogeneous RTT flows.

### Why pacing could be more bursty?

- Intuitively, pacing should be no more bursty than ack-clocking.
- We shall illustrate why the phenomenon could happen by behavioral models.

#### Behavioral models – equal window size



#### Behavioral models – different window size

Assumption: 3 flows, the same RTT, <u>different</u> windows size = 5, 3, 10, respectively.



### The effect of window un-synchronization

- Generate packet arrival sequences by the behavioral models
  - T = 100 ms,  $\tau$  = 0.1 ms, 3 flows
  - compare two cases
    - synchronized windows: 30, 30, 30
    - un-synchronized windows: 20, 30, 40
- Observe traffic burstiness based on the wavelet-based MultiResolution Analysis (MRA) for the synthesized traffic.

## The energy plot



Ack-clocking nearly remains its burstiness

- Pacing become more bursty
- The effect can be amplified by more flows (show later)

### Validation and Simulations

- Observation: window un-synchronization can raise burstiness of pacing traffic.
- We conduct network simulations to:
  - validate the observation
  - examine the impact of flow multiplexing
  - examine the impacts of other variabilities

### **Simulation Setup**

- the network simulator is ns-2
- 1--50 flows, RTT are fixed to 100 ms
- network topology



### The Effect of Multiplexing – Ack-clocking



Global Internet 2005

### The Effect of Multiplexing – Pacing



Global Internet 2005

### The Effect of Multiplexing – A Comparison



 50 flows ⇒ pacing is more bursty in most of sub-RTT time scales

 the comparative burstiness of two schemes are very different with and without flow multiplexing

Global Internet 2005

### Examine the effect of RTT heterogeneity

- The simulation setup is almost the same except:
  - fixed to 50 flows
  - RTTs are drawn from an uniform distribution over (100 ms, 300 ms)

### The Effect of RTT Heterogeneity



Global Internet 2005

#### More Network Variabilities

Simulations with additional factors:

multi-hop, two-way traffic, cross-traffic, and their combinations

| ID     | Topology    | RTT<br>Heter. | Two-Way<br>Traffic | Cross<br>Traffic |
|--------|-------------|---------------|--------------------|------------------|
| Fixed  | Dumbbell    | -             | -                  | -                |
| VarRTT | Dumbbell    | $\checkmark$  | -                  | -                |
| TwoWay | Dumbbell    | $\checkmark$  | $\checkmark$       | -                |
| Cross  | Dumbbell    | $\checkmark$  | -                  | $\checkmark$     |
| Real   | Parking-lot | $\checkmark$  | $\checkmark$       | $\checkmark$     |

#### Network Variabilities on Ack-clocking



Global Internet 2005

#### **Network Variabilities on Pacing**



- None of variabilities significantly affect pacing's behavior
- As long as RTTs are heterogeneous:
  - Ack-cloking is no less bursty than Poisson
  - Pacing is no more bursty than Poisson

#### Conclusion

- Provided physical explanation for 'why pacing could be more bursty than ack-clocking'
- Comparative burstiness of the TCP clocking schemes are network condition dependent, especially <u>RTT heterogeneity</u> and <u>flow</u> <u>multiplexing</u>.
- It's critical to include sufficient variabilities in performance evaluation of TCP based protocols.

# **Thank You!**