
An Empirical Evaluation of TCP Performance in
Online Games∗

Kuan-Ta Chen12, Chun-Ying Huang1, Polly Huang13, and Chin-Laung Lei13
1Department of Electrical Engineering, National Taiwan University

2Institute of Information Science, Academia Sinica
3Graduate Institute of Networking and Multimedia, National Taiwan University

ABSTRACT
A fundamental design question to ask in the development
of a network game is—Which transport protocol should be
used—TCP, UDP, or some other protocols? Seeking an ob-
jective answer to the choice of communication protocol for
MMORPGs, we assess whether TCP, a popular choice, is
suitable for MMORPGs based on empirical evidence. To
the best of our knowledge, this work is the first evaluation of
transport protocol performance using real-life game traces.

We analyze a 1, 356-million-packet trace from ShenZhou
Online, a TCP-based, commercial, mid-sized MMORPG.
Our analysis indicates that TCP is unwieldy and inappropri-
ate for MMORPGs. This is due to four distinctive charac-
teristics of MMORPG traffic: 1) tiny packets, 2) low packet
rate, 3) application-limited traffic generation, and 4) bi-
directional traffic. We show that because TCP was origi-
nally designed for unidirectional and network-limited bulk
data transfers, it cannot adapt well to MMORPG traffic. In
particular, the window-based congestion control and the fast
retransmit algorithm for loss recovery are ineffective. Fur-
thermore, TCP is overkill, as not every game packet needs
to be transmitted in a reliably and orderly manner. We also
show that the degraded network performance did impact
users’ willingness to continue a game. Finally, we discuss
guidelines in designing transport protocols for online games.

Keywords
Internet Measurement, MMOG, Network Games, Perfor-
mance Analysis, Transport Protocols

1. INTRODUCTION
MMORPGs (Massive Multiplayer Online Role Playing Games)

have become extremely popular among network gamers, mil-

∗
This work is supported in part by the National Science Council

of the Republic of China under the Grants No. NSC 94-2213-
E-002-043 and NSC 94-2218-E-002-038, and by the Ministry of
Economic Affairs under the Grant No. 94-EC-17-A-02-S1-049.

Table 1: The Transport Protocols Used by Popular
MMORPGs

Protocol MMORPGs

TCP World of Warcraft, Lineage I/II, Guild Wars,
Ragnarok Online, Anarchy Online, Mabinogi

UDP EverQuest, City of Heroes, Star Wars Galaxies,
Ultima Online, Asherons Call, Final Fantasy XI

TCP/UDP Dark Age of Camelot

lions of whom now play in an evolving virtual world simul-
taneously over the Internet. The number of active player
subscriptions doubled between July 2004 and June 2005
to a 500-million player base [15]. According to a recent
study [12], the network impairment, including delay and jit-
ter, does have a negative influence on the players’ perceived
game quality and performance. With an exponentially grow-
ing population, the problem of satisfying the players’ need
for quality online gaming becomes prominent and urgent.

To keep up with this popular trend, the games industry
is allocating more resources to the development of MMO-
RPGs. However, a fundamental design problem arises in
each game’s initial development: Which communication pro-
tocol should be used—TCP, UDP, or some other protocols?
Although game developers have reached a degree of consen-
sus on the protocol for fast-paced games, opinions about
a suitable protocol for MMORPGs are widely divergent.
As GameDev.Net states [2]: “For RTS (Realtime Strategy)
games, you’re usually best (sic) off using TCP, although
UDP can make sense in extreme cases. For action-based
games like first-person shooters or racers, you should ab-
solutely use UDP. For role playing games, the story is less
clear—action-based RPGs with lots of kinetics, like City of
Heroes, use UDP, whereas slower RPGs and MUDs often
stay with TCP.” Among the most popular MMORPGs on
the market in 2005 (listed in Table 1), both TCP and UDP
have quite a few proponents, while other games use a hybrid
approach that takes advantage of both protocols. The pro-
tocol usage evidences that consensus has not been reached on
the choice of the transport protocol for this genre of games.
Heated debate about the most appropriate protocol for MMO-
RPGs frequently occurs at game developers’ forums1. The
contention continues with numerous, usually contradictory,
comments on the appropriateness of TCP, UDP, RTP, or
other middleware-specific protocols. In this paper, based on

1http://www.gamedev.net/community/forums/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

ACE 06, June 14-16, 2006, Hollywood, California, USA.
Copyright 2006 ACM 1-59593-380-8 /06/0006 ...$5.00.

empirical evidence, we seek a neutral answer to the question
that whether TCP is suitable for MMORPGs. To the best
of our knowledge, this work is the first to analyze real-life
game traces in terms of network performance problems.

Based on a 1, 356-million-packet trace from ShenZhou On-
line [1], a TCP-based, commercial, mid-sized MMORPG, we
analyzed the performance problems related to the choice of
TCP in terms of protocol overhead, in-order delivery, con-
gestion control, and loss recovery. Our evaluation indicates
that, for various reasons, TCP is unwieldy and inappropriate
for MMORPGs. The major findings are as follows:

• Because game packets are generally small, the TCP/IP
header takes up 46% of the total bandwidth used.
Specifically, packet headers take up four times more
bandwidth than the application payload in client traf-
fic, and consume half the bandwidth of server traffic.

• TCP ensures in-order delivery at the byte level, which
is not actually needed for every game message. Be-
cause even a single dropped packet causes a stall in
subsequent network data until that packet is success-
fully delivered, 7% of connections incur more than 20%
additional average transmission latency, and 6% incur
at least 200% additional delay jitter (standard devia-
tion of transmission latencies).

• The congestion control mechanism is ineffectual since
game traffic is application-limited, rather than network-
limited. However, 12% of client packets and 18% of
server packets face a congestion window reset before
they are released. This leads to additional latency
whenever a burst of a few commands is generated fol-
lowing a short period of thinking.

• The fast-retransmit algorithm is ineffective because of
low packet rate and bi-directional traffic. As a result,
more than 99% of dropped packets are not detected by
the sender until retransmission timeout occurs. This
leads to an average latency of 700 ms for dropped pack-
ets, while the average latency for normal (not dropped)
packets is 185 ms. To overcome this problem, the se-
lective acknowledgement (SACK) mechanism, which
is relatively unaffected by distinctive features of game
traffic, should be enabled whenever TCP is used.

Having found that TCP leads to a significantly increase in
network performance measures, we continue to examine its
impact on user behavior. According to a model describing
the relationship between session time and network QoS fac-
tors [7], we estimate that the departure rate of game players
will decrease by 20% if the additional delay jitters induced
by TCP could be avoided. This corresponds to an increase
of the median game playing time from 100 minutes to 135
minutes in our case. Finally, a number of design guide-
lines are proposed by exploiting the unique characteristics
of game traffic.

The remainder of this paper is organized as follows. Sec-
tion 2 describes related works. We discuss the collection
and summary of trace in Section 3. In Section 4, we briefly
elucidate the characteristics of MMORPG traffic. Next, in
Section 5, we analyze the performance problems induced by
TCP from several aspects. We discuss the implications of
the analysis and protocol design guidelines in Section 6. Fi-
nally, Section 7 draws our conclusion.

Figure 1: A screen shot of ShenZhou Online

2. RELATED WORK
In [10], Mauve et al proposed Real-Time Application Level

Support for Distributed Interactive Media (RTP/I). This is
an extension of the Real-Time Transmission Protocol (RTP),
and has been proposed as the standard protocol framework
for distributed interactive applications, namely, shared white-
boards, distributed virtual environments, and network games.
Claiming that TCP is too heavy due to its complex conges-
tion control algorithm and byte-oriented window scheme,
Pack et al [11] proposed the Game Transport Protocol (GTP),
optimized to meet the various requirements of MMORPGs.
GTP uses a packet-oriented, rather than byte-oriented, win-
dow scheme to accommodate the small packet size of game
traffic. Furthermore, to meet the realtime constraints of
transmission, it supports an adaptive retransmission scheme
that controls the maximum number of retransmissions ac-
cording to packet priority.

Our work differs from earlier studies in that we analyze the
performance problems induced by the predominant trans-
port protocol, TCP, rather than directly propose a new
protocol. Having demonstrated that TCP is unsuitable for
MMORPGs, based on the understanding gained from em-
pirical analysis, we proposed a number of design guidelines
that exploit the unique characteristics of game traffic.

3. TRACE COLLECTION
ShenZhou Online is a TCP-based, mid-scale, commercial

MMORPG that is very popular in Taiwan [1], where there
are thousands of players online at any one time. To play,
the participants purchase “game points” from a convenience
store or online. A screen shot of ShenZhou Online is shown
in Fig. 1. As is normal in MMORPGs, a player can en-
gage in fights with the other players or with random crea-
tures, train himself in special skills, participate in market-
place commerce, or take on a quest. With the help of the
ShenZhou Online staff, we set up a traffic monitor beside the
game servers. The collected two traces, N1 and N2, which
spanned 8 and 12 hours respectively and contained more
than 1, 356 million packets, are summarized in Table 2. Due
to the lack of space, we refer interested readers to [6] for the
details of the traced game and measurement setup.

Table 2: Summary of Game Traffic Traces
Trace Sets Date Time Period Drops† Conn. (Cens.) Pkt. (in / out / both) Bytes (in / out / both)

N1 3 8/29/04 15:00 8 hr. 0.003% 57,945 (6.5%) 342M / 353M / 695M 4.7TB / 27.3TB / 32.0TB

N2 2 8/30/04 13:00 12 hr. ?‡ 54,424 (3.5%) 325M / 336M / 661M 4.7TB / 21.7TB / 26.5TB
† This column gives the kernel drop count reported by tcpdump.
‡ The reported kernel drop count was zero, but we found that some packets were actually dropped at the monitor.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Payload size (bytes)

C
um

ul
at

iv
e

di
st

rib
ut

io
n

fu
nc

tio
n

25 50 75 100 150 200 300 500

Client packets
Server packets

Figure 2: Payload size distribution

4. GAME TRAFFIC CHARACTERISTICS
In this section, we briefly elucidate the characteristics of

MMORPG traffic within individual connections. Only infor-
mation useful to the analysis of TCP performance is men-
tioned (readers can refer to [6] for more details of MMORPG
traffic characteristics). For brevity, we denote packets sent
by game clients, including data packets and TCP acknowl-
edgement packets, as “client packets”, and all traffic sent by
clients as “client traffic.” The terms “server packets” and
“server traffic” are similarly defined.

Fig. 2 shows the cumulative distribution function (CDF)
of the payload size. As the figure shows, client packets and
server packets are drastically different in payload size. The
discrepancy conforms to our intuition, since client packets
contain one player’s commands, whereas server packets con-
vey nearby characters’ actions and states as well as system
messages. The client packets are extremely small : 98% of
them have a payload size smaller than 32 bytes. The two
modes 23 and 27 bytes, which comprise 36% and 52% of
packets respectively, show that user actions are dominated
by a few popular commands, such as “walk” and “attack.”
In contrast, server packets have a much wider distribution
with an average payload size of 114 bytes.

We now turn to the distribution of packet interarrival
times. As Fig. 3 shows, most client inter-packet times are
spread over 0 ms to 600 ms. We find that the best-fit expo-
nential distribution with a rate of 8 pkt/sec approximately
fits the empirical cumulative distribution function; however,
the deviation of the exponential-fit is apparent at time scales
larger than 200 ms. Detailed investigation shows that the
deviation from the exponential distribution of inter-packet
times is caused by the diversity of user behavior [6], which
is a distinct feature of adventure-oriented games, including
MMORPGs. On the other hand, server packet interarrivals

0 100 200 300 400 500 600

0.
0

0.
2

0.
4

0.
6

0.
8

Packet interarrival time (ms)

C
um

ul
at

iv
e

di
st

rib
ut

io
n

fu
nc

tio
n

Exponential CDF with
rate = 8 pkt/sec

0.
95

Client packets
exp(client packets)
Server packets

Figure 3: Packet interarrival distribution

are much more regular—approximately 50% of the interar-
rival times are around 200 ms. The concentration of inter-
packet times at certain intervals shows that servers broad-
cast information to clients on a regular basis.

5. PERFORMANCE ANALYSIS
TCP is sophisticated in that it comprises mechanisms such

as reliable transmission, in-order delivery, congestion con-
trol, and flow control. In the following, based on the col-
lected game traces, we analyze the performance problems
induced by the interplay of TCP and the design of MMO-
RPGs. We show that congestion control and loss recovery
are ineffective for MMORPGs, while in-order delivery can
cause unnecessary transmission latencies.

5.1 Protocol Overhead
TCP guarantees reliable transmission through a positive

acknowledgement policy, which assumes that a segment is
not successfully received by the destination host until it
is acknowledged. By this policy, whenever a host receives
a segment, it must generate an acknowledgment (ack for
short) packet to notify the sender of receipt of the specific
segment. To reduce the number of ack packets, [5] proposed
a delayed ack option that only sends back an ack for al-
ternate TCP segments received by a connection, unless the
delayed ack timer (usually set to 200 ms) has expired. Ide-
ally this design should reduce the number of ack packets to
half the number of data packets if the majority of succes-
sive data segments arrive at the destination in intervals of
less than 200 ms. This is the case with bulk data transfers,
where the data packets are sent in bursts. However, game
packets are generated at a low rate, so it is more unlikely
that any further packets will arrive before the expiration of
the delayed ack timer. We observe that the number of client

ack packets is much more than half the number of client data
packets (the ideal case). This is because approximately 40%
of server packets are released at intervals longer than 200
ms following the release of the preceding packet (cf. Fig. 3).
In the overall trace, 38% of packets are pure TCP acks.

Owing to the relatively large proportion of pure ack pack-
ets and the small packet size, the overhead of the TCP/IP
header is very large compared to the volume of the appli-
cation payload. In the traces, the TCP/IP header takes up
46% of the total bandwidth used. Specifically, packet head-
ers take up four times more bandwidth than the application
payload in client traffic, and consume half the bandwidth of
server traffic.

5.2 In-Order Delivery
For many applications, such as file transfers, netnews, and

the World Wide Web, in-order delivery is a must-have, since
it ensures that the receiver application can process the data
stream in the exact order generated by the sender. To guar-
antee in-order delivery, at the destination host, a packet
cannot be processed until all of its preceding packets have
been received and processed. However, the mechanism in-
curs unnecessary overhead if the data packets do not need
to be processed in order. For example, suppose a game
server sends out a series of 10 packets with position up-
dates, but the first packet is lost so that only 9 packets are
successfully delivered to the client. Until the client receives
a retransmitted copy of the first packet, the other 9 packets
must be buffered because they cannot be processed by the
application. As a matter of fact, position updates in MMO-
RPGs are often designed to be accumulated, so processing
the 9 successfully delivered packets immediately upon re-
ceipt gives players a smoother gaming experience.

In practice, server packets primarily comprise accumu-
lated state updates, dialogue messages, and responses to
queries, such as information about certain equipment or
the price of certain goods. Therefore, server packets, ex-
cept those carrying dialogue messages, can usually be safely
processed in any order. On the other hand, client pack-
ets primarily convey user actions, such as movement and
fighting actions, which cannot be processed out of order.
However, because most client commands relate to the most
popular actions, and the same actions tend to occur in suc-
cession [6], a client packet is likely to repeat its preceding
packet. In this case, the “repeated packets” can be processed
out of order without affecting the correctness of the game.
In view of the above, we remark that in-order processing of
all game packets is unnecessary ; consequentially, using TCP
for MMORPGs can cause unnecessary latency.

To assess how much additional delay is induced by en-
forcing packet ordering, we assume an extreme case where
game packets can be processed in any order. The two main
sources of out-of-order delivery, packet reordering in the net-
work and packet loss, are considered. As we captured the
trace at the server side, we define “latency” as the time dif-
ference between the departure time of a server packet and
the time the corresponding ack packet is received.

5.2.1 Packet reordering
We first observe the latency due to packet reordering in

the network [4]. Fig. 4(a) depicts the distribution of the
average latency of normal (ordered) packets, average addi-
tional delay due to reordered packets, and average latency

Latency (ms)

D
en

si
ty

0 100 200 300 400 500

0.
00

0
0.

00
4

0.
00

8
0.

01
2

normal packets
reordered delay
all packets

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Inflation ratio of latency (%)

C
um

ul
at

iv
e

di
st

rb
ut

io
n

fu
nc

tio
n

Figure 4: The effect of packet reordering on network
latency

of all packets. On average, a packet was buffered for 140 ms
if one or more of its preceding packets arrived late. Packet
reordering only occurred in 2% of connections, and, within
these connections, only 0.1% packets arrived at the desti-
nation later than their subsequent packets. Therefore, the
overall latency did not increase significantly. In Fig. 4(b),
we draw the expansion ratio of latency due to network re-
ordering. In most connections, the reordering causes less
than 4% additional delay to the average latency, which is
acceptable.

5.2.2 Packet loss
Compared with packet reordering, packet loss occurred

more frequently and incurred longer delays. Fig. 5(a) shows
the average latency of normal (non-lost) packets, lost pack-
ets, and all packets. Because it takes a great deal of time for
the source host to detect and retransmit a dropped packet,
the average latency of packets that have been lost (576 ms)
is much longer than that of normal packets (186 ms). To il-
lustrate the impact of packet loss on the overall latency, we
compute the expansion ratio of latency due to packet loss
for connections that experienced at least one packet loss. As
shown in Fig. 5(b), 33% of connections incurred more than
10% additional latency, and 7% incurred more than 20%
additional latency, which is much higher than that caused
by packet reordering. The overall average latency due to
packet loss increases from 186 ms to 199 ms, which we con-
sider moderate and not detrimental.

However, delay jitters, i.e., the standard deviation of la-
tencies, are more sensitive to the excessive latency of re-
transmitted packets. In Fig. 6(a), we show that delay jitters
of lost packets spread more widely than those of normal
packets. The average delay jitter of lost packets is 321 ms,
and that of normal packets is 77 ms, which yields a expan-
sion factor of four. As shown in Fig. 6(b), the distribution
of the expansion ratio of delay jitters indicates that 22% of

(a) Latency (ms)

D
en

si
ty

0 200 400 600 800

0.
00

0
0.

00
4

0.
00

8
0.

01
2

normal packets
lost packets
all packets

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) Expansion ratio of latency (%)

C
um

ul
at

iv
e

di
st

rb
ut

io
n

fu
nc

tio
n

Figure 5: The effect of packet loss on network la-
tency

connections incurred more than 100% additional jitters, and
6% incurred more than 200%. Overall the average delay jit-
ter increased from 77 ms to 123 ms due to packet loss, an
increase of 60%. According to a recent study [7], high de-
lay jitters are less tolerable than high latencies, since it is
easier for players to adapt to a slow game speed than to a
continuously fluctuating game pace. Consequently, the in-
crease in delay jitters due to the joint effect of the in-order
delivery policy and packet loss could be one of the major
causes which degrade the overall gaming experience.

5.3 Congestion Control
In order to effectively use the network capacity and main-

tain fairness between different flows, TCP employs a feedback-
controlled and window-based traffic regulation scheme. The
approach uses a congestion window to limit the maximum
number of packets that can be released within a round-trip
time. In short, TCP’s congestion control are designed to
adjust the size of the congestion window so that it faithfully
reflects the bandwidth available for legitimate use by the
current flow in terms of efficiency and fairness.

The problem is that the design of TCP congestion control
is based primarily on the assumption that data transmission
is network-limited, i.e., the sender always has data to send
before the connection terminates. In contrast, data genera-
tion is application-limited in network games, i.e., the appli-
cation often has a smaller amount of data to send compared
to the capacity it could use. The congestion window (cwnd)
evolves based on an addictive increase and multiplicative
decrease policy [3]. For bulk transfers, the cwnd inflates on
receipt of an ack packet that acknowledges new data, and
shrinks whenever TCP detects a packet loss, which is seen
as a signal that the window size is beyond the legitimate
share of bandwidth. As a result, the cwnd always oscil-
lates between a minimum size and a value corresponding to
the available bandwidth. However, since network games are

(a) Delay jitter (ms)

D
en

si
ty

0 100 200 300 400

0.
00

0.
01

0.
02

0.
03

normal packets
lost packets
all packets

0 50 100 150 200 250 300

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) Expansion ratio of delay jitter (%)

C
um

ul
at

iv
e

di
st

rb
ut

io
n

fu
nc

tio
n

Figure 6: The effect of packet loss on delay jitters

application-limited, and their traffic load is usually much
smaller than the network capacity, packet loss may never
happen. In this case, the cwnd increases indefinitely and
cannot faithfully reflect the condition of the network path.
Actually, in our traces, the maximum and average window
sizes in the server to client direction are 1.7 Mbps and 372
Kbps assuming MTU of 1500 bytes, which are unreason-
ably large to reflect the true bandwidth available to indi-
vidual flows. Furthermore, 36% of connections experienced
no packet loss, which could never happen in network-limited
applications with sufficient data. The inappropriately large
window size can be harmful if an application does not re-
main application-limited at all times, i.e, it may occasionally
generate a large burst of packets in a small period. In this
case, the large window would allow excess traffic to be sent,
which is beyond the network capacity and leads to unneces-
sary congestion.

Although the congestion window tends to increase indef-
initely in MMORPGs, occasionally the window inappropri-
ately restricts the departure of game packets. According to
the policy of restart after idle periods [3], the cwnd should
reduce to two packets before beginning transmission, if the
sender host has not sent data in an interval exceeding the
retransmission timeout (RTO). This policy prevents poten-
tially inappropriate bursts of traffic being transmitted due
to an out-of-date cwnd that does not correctly reflect cur-
rent network conditions. However, as we have seen, the
generation of game packets is slow so that intervals between
successive packets can be longer than retransmission time-
out. In this case, TCP assumes that the present connection
is idle and unnecessarily resets the congestion window.

Fig. 7 depicts the distributions of RTO, client packet inter-
arrival times, and server packet interarrival times. As can be
seen, RTO is generally longer than packet interarrival times
in both directions. The upper portion of the client packet
interarrival times is shaded to indicate that they are likely to
be longer than RTO, which causes resets of the congestion

0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (sec)

C
um

ul
at

iv
e

di
st

rib
ut

io
n

fu
nc

tio
n

0.
89

RTO
Client packet interarrivals
Server packet interarrivals

Figure 7: The comparison of retransmission time-
outs (RTO) and packet interarrival times

window. Empirically, in our traces, 12% of client packets
and 18% of server packets faced a cwnd reset before they
were released, which explains why the congestion window
did not increase unboundedly. The restart-after-idle-periods
policy can induce additional transmission latency. For ex-
ample, a player might be accustomed to issuing a series of
three commands, “sneak,” “move,” and “attack” following
a short period of thinking that is longer than RTO. In this
case, he will be penalized because the third command can-
not be released until the acknowledgement for the initial
command has been received. This explains that resetting
the congestion window after idle periods may degrade the
interactivity and responsiveness of network games.

5.4 Loss Recovery
TCP relies on three strategies [3] (depending on the TCP

version used) to infer whether a packet has been received
by the destination host: 1) retransmission timeout, i.e., a
packet is deemed as dropped if it has not been acknowledged
in a time interval of RTO; 2) the fast-transmit mechanism,
i.e., a packet is deemed as dropped if four successive and
identical ack packets arrive without the arrival of any other
intervening packets, and the four packets do not acknowl-
edge all outgoing packets; and 3) the selective acknowledg-
ment (SACK) mechanism [9], where the receiver can inform
the sender about all segments that have arrived success-
fully, so the sender only needs to retransmit the segments
that have actually been lost. As the game servers we traced
did not enable the SACK option, we were able to analyze
the performance of the former two strategies. We show that
though the fast-retransmit algorithm is designed to alleviate
long delays due to loss detection via retransmission timeout,
it is ineffective in the case of MMORPGs.

We begin with some statistics of how TCP detected dropped
packets in our traces. For server packets, only 0.08% of
dropped packets were detected by the fast-retransmit mech-
anism; in other words, the game servers did not detect
99.92% of the packet loss until retransmission timeout oc-
curred. As this result is counter-intuitive, even unbeliev-
able, we illustrate how it can happen in detail. Our analysis
indicates that fast retransmit failed for two reasons: 1) in-
sufficient duplicate acks were received; 2) the counting of
duplicate acks was interrupted by non-duplicate acks. As

Table 3: The reasons why fast retransmit failed to
trigger

Cause Ratio

Insufficient duplicate acks 50.96%
Duplicate ack accumulation were interrupted 49.04%

New data 48.90%
New ack 0.02%
Window size change 0.12%

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (ms)

C
um

ul
at

iv
e

di
st

rib
ut

io
n

fu
nc

tio
n

0 200 400 600 800 1000

RTO − RTT
Server packet interarrivals

Figure 8: Server packet interarrival times are com-
parable to average RTO - average RTT.

listed in Table 3, both cases occurred with approximately
the same frequency. With regard to the first cause, the figure
indicates that in approximately half the cases insufficient du-
plicate acks were received. This is because the server packet
rate was too low to elicit sufficient duplicate acks. The de-
sign of fast retransmit assumes packets are sent in bursts so
that when a packet is dropped, each of its successive pack-
ets will elicit a duplicate ack. In other words, to trigger
the fast retransmit before a retransmission timeout, there
should be at least three additional packets released within
an interval of (RTO − RTT) following the departure of the
dropped packet. However, because the server packet rate is
too low, it is very unlikely that four packets could be released
within that short period. In Fig. 8, we contrast the intervals
(RTO−RTT) with the server packet interarrival times. We
observe that both measures are comparable, where 34% of
server packet interarrival times (shaded area) are likely to be
longer than their corresponding (RTO−RTT), i.e., no sub-
sequent packets were released within that interval. Since
insufficient server packets were released in succession fol-
lowing the dropped packet, insufficient duplicate acks were
generated; consequently, fast retransmit was not triggered.

The second reason fast retransmit failed to trigger is that
game traffic is bi-directional. While not clearly defined in [3],
according to [14] and the implementation of 4.4BSD, the
definition of duplicate acks is strict in that each ack packet
must not contain data, must have the same receiver window
size, and must have the same acknowledged sequence num-
ber. The definition implies that if the opposite party trans-
mits a data packet to the host, which is waiting for more
duplicate acks, then the counting of duplicate acks will be
reset to zero. In other words, the fast retransmit may not

Latency (ms)

D
en

si
ty

200 400 600 800 1000

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

0.
00

6

Retrx latency
RTO
RTO + RTT

Figure 9: Average latency of dropped packets

be triggered, even if sufficient duplicate acks are generated.
According to Table 3, the counting of duplicate acks was
interrupted in approximately half the cases before sufficient
duplicate acks were accumulated. In particular, most du-
plicate ack interruptions were caused by data segments sent
from the game clients, i.e., they were apt to release more
packets before sufficient duplicate acks were generated. As
shown in Fig. 3, the client packet interarrival times can be
approximately described by an exponential distribution with
an average rate of 8 pkt/sec. Now, suppose that the accu-
mulation of sufficient duplicate acks takes approximately one
round-trip time. We can then compute that the probability
of a game client generating at least one additional packet
within a round-trip time is Pr(X < 0.185) ≈ 0.77, where X
is an exponential random variable with mean = 1/8, and
185 ms is the overall average RTT taken from traces. Be-
cause of the low server packet rate and the relatively high
client packet rate, client packets usually arrived before suf-
ficient duplicate acks could be accumulated; therefore, the
fast retransmit failed to trigger in most cases.

In addition to the above argument, we provide more ev-
idence to back up the observation that fast retransmit was
not triggered properly. Theoretically, a dropped packet de-
tected by a retransmission timeout would incur a transmis-
sion latency of (RTO + RTT). As shown in Fig. 9, the dis-
tribution of the latency of retransmitted packets and that
of (RTO + RTT) are approximately equivalent. This again
evidences that most dropped server packets were detected
and recovered by retransmission timeouts.

We remark that while fast retransmit is shown to be in-
effective, SACK is immune to traffic bi-directionality, and
only one ack packet elicited by a further packet is sufficient
to make the source host aware of the dropped packet. Thus,
we highlight the importance of the SACK algorithm in net-
work games, and recommend that every network game em-
ploying TCP should guarantee the SACK option is enabled
at both ends.

6. DISCUSSION
In this section, we discuss the generality of our analysis

and its implications, and present how performance degrada-
tion due to TCP affects users’ gaming experience. Finally we
propose a number of guidelines in designing efficient trans-
port protocols for online games.

6.1 Generality of Analysis
Although our analysis is confined to traces from a single

game, we argue the generality of our findings from two as-
pects: traffic characteristics and client distributions. The
game traffic characteristics which lead to TCP performance
problems are mainly 1) tiny packets, 2) low packet rate, 3)
application-limited traffic generation, and 4) bi-directional
traffic; however, these properties are essentially shared by
all real-time interactive network games, rather than specific
to this particular game [8]. With respect to client distribu-
tions, while the traced game servers are located in Taiwan,
players were spread over 13 countries and hundreds of au-
tonomous systems. As a matter of fact, the average RTTs
range from 95 ms to 580 ms, and the loss rates range from no
loss to 20% (computed by one percentile and 99 percentile,
respectively). The heterogeneity of network path character-
istics manifests that our analysis result is not particular to
a specific environment but rather generalizable.

6.2 Performance Impact on User Experience
Having shown that TCP cause degradation in terms of

network performance metrics, such as packet delay and de-
lay jitters, we now discuss how did the degraded performance
impact users’ willingness to continue a game. In [7], with an
in-depth analysis of the relationship between session time
and network QoS factors, the authors established that all
of network delay, delay jitters, and packet loss significantly
affect game playing time. Based on the survival model devel-
oped in that paper, we can quantify the impact of degraded
performance on user departure rate by

hazard function ∝ exp(19.2 × rtt.min + 4.54 × rtt.sd +

0.7 × log(closs) + 0.45 × log(sloss)).

The hazard function gives the instantaneous rate at which
users leave the game for sessions that have lasted for time
t, where rtt.min, rtt.sd, closs, and sloss stand for minimum
RTT, standard deviation of RTT, client packet loss rate,
and server packet loss rate, respectively.

To our traces, the delay jitters were raised from an aver-
age of 77 ms to 124 ms due to the joint effect of in-order
delivery policy and packet loss. The increase in hazard
rate due to the increase in delay jitters can be computed
by exp((0.124 − 0.077) × 4.54) ≈ 1.24, where 4.54 is the
coefficient of factor rtt.sd. That is, the increase of delay
jitters has raised the probability that a player will leave the
game in every instant by 24%. In other words, assuming
an ideal case that the additional delay jitters induced by
TCP could be avoided, the user departure rate is expected
to decrease by 20% (1/1.24 ≈ 0.8). Concretely speaking,
this corresponds to an increase of the median game play-
ing time from 100 minutes to 135 minutes in our case. By
the above computation, we can see that there is much room
for improvement by making loss recovery more efficient and
only ordering packets whenever necessary.

6.3 Protocol Design Guidelines
Based on the understanding of game traffic and its inter-

action with TCP, we propose the following guidelines for the
design of game transport protocols:

• Supporting both reliable and unreliable delivery:
Not every game packet needs to be reliably transmitted.
For example, the state updates which contain gestures

or motions of a character faraway from the notified char-
acter need not be reliable as the acting character is un-
apparent on screen. The level of detail [13] could be
mapped to a maximum tolerable loss rate of state up-
dates, i.e., the closer the object is, the more exact the
object’s state should be.

• Supporting both in-order and out-of-order deliv-
ery: We have shown that the in-order delivery policy
leads to higher latencies and delay jitters due to un-
avoidable packet reordering and loss. This overhead can
be reduced by only ordering packets when it is absolutely
necessary. For example, repeated attack commands on
an opponent, which are frequent in game play, could be
processed out of order, as they are semantically and vi-
sually equivalent.

• Accumulative delivery: Many types of game mes-
sages are accumulative in nature, i.e., subsequent infor-
mation will override the earlier ones. For example, state
updates, especially position updates, are usually accu-
mulated so that a missing one would not matter, unless
it is the last in a series of updates. Thus, a series of
accumulated commands, except for the last command,
could be delivered in an unreliable and out-of-order way,
which will certainly reduce the network load and appli-
cation latency.

• Multiple Streams: Game messages should be designed
as independent as possible, so that a delayed message will
not affect the subsequent ones. One solution is putting
unrelated messages into parallel streams, and only ensur-
ing the packet ordering in each of which. For example,
chat messages are apparently independent of game play
commands and should be put into a separate stream.

• Coordinated congestion control: Given that numer-
ous flows, e.g., more than tens of thousands, are fre-
quently seen on MMOG servers, it would be difficult
for these flows to achieve an efficient bandwidth sharing
in terms of fairness and responsiveness. We consider it
is especially important for game flows to do congestion
control in a coordinated, rather than individual, manner.
For example, avoid dispatching game messages synchro-
nously could alleviate the traffic burstiness and decrease
the probability of packet loss [6].

Given the unique demand in game packet delivery, none of
standardized protocols are readily fit to our needs. In prac-
tice, the desired protocol could be designed as a hybrid. For
example, using UDP, RTP, or DCCP as a basis for unreli-
able transmission, and using SCTP and RDP as a basis for
reliable transmission. We remain the detailed design and
evaluation of transport protocols for online games as part of
future work.

7. CONCLUSION
In this paper, we have analyzed the performance of TCP

in of ShenZhou Online, a commercial, mid-sized MMORPG.
Out study indicates that, though TCP is full-fledged and ro-
bust, simply transmitting game data over TCP could cause
unexpected performance problems. This is due to the follow-
ing distinctive characteristics of game traffic: 1) tiny pack-
ets, 2) low packet rate, 3) application-limited traffic gener-
ation, and 4) bi-directional traffic.

We have shown that because TCP was originally designed
for unidirectional and network-limited bulk data transfers,

it cannot adapt well to MMORPG traffic. In particular,
the window-based congestion control mechanism and the
fast retransmit algorithm for loss recovery are ineffective.
This suggests that the selective acknowledgement option
should be enabled whenever TCP is used, as it significantly
enhances the loss recovery process. Furthermore, TCP is
overkill, as not every game packet needs to be transmitted
reliably and processed in an orderly manner. We have also
shown that the degraded network performance did impact
users’ willingness to continue a game. Finally, a number
of design guidelines have been proposed by exploiting the
unique characteristics of game traffic.

Acknowledgments
This work would not have been possible without the ex-
tensive traffic trace of ShenZhou Online. The authors are
much indebted to the following people who helped us gather
the trace: Tsing-San Cheng, Lawrence Ho, Chen-Hsi Li,
and especially to Yen-Shuo Su, who between them made
the datasets available. The authors also wish to thank the
anonymous referees for their constructive criticisms.

8. REFERENCES
[1] ShenZhou Online. http://www.ewsoft.com.tw/.
[2] FAQ - Multiplayer and Network Programming.

GameDev.Net, 2004.
[3] M. Allman, V. Paxson, and W. Stevens. TCP Congestion

Control. RFC 2581, Apr. 1999.
[4] J. C. R. Bennett, C. Partridge, and N. Shectman. Packet

reordering is not pathological network behavior.
IEEE/ACM Trans. Netw., 7(6):789–798, 1999.

[5] R. Braden. Requirements for Internet Hosts -
Communication Layers. RFC 1122, Oct. 1989.

[6] K.-T. Chen, P. Huang, and C.-L. Lei. Game traffic analysis:
An MMORPG perspective. Computer Networks, 51(3),
2007. Article In Press.

[7] K.-T. Chen, P. Huang, G.-S. Wang, C.-Y. Huang, and C.-L.
Lei. On the sensitivity of online game playing time to
network QoS. In Proceedings of IEEE INFOCOM’06,
Barcelona, Spain, Apr. 2006.

[8] W. C. Feng, F. Chang, W. C. Feng, and J. Walpole. A
traffic characterization of popular on-line games.
IEEE/ACM Transactions on Networking, 13(3):488–500,
June 2005.

[9] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP
Selective Acknowledgement Options. RFC 2018, Oct. 1996.

[10] M. Mauve, V. Hilt, C. Kuhmünch, and W. Effelsberg.
RTP/I - toward a common application level protocol for
distributed interactive media. IEEE Transactions on
Multimedia, 2001.

[11] S. Pack, E. Hong, Y. Choi, llkyu Park, J.-S. Kim, and
D. Ko. Game transport protocol: lightweight reliable
transport protocol for massive interactive on-line game. In
Proceedings of the SPIE, volume 4861, pages 83–94, 2002.

[12] P. Quax, P. Monsieurs, W. Lamotte, D. D. Vleeschauwer,
and N. Degrande. Objective and subjective evaluation of
the influence of small amounts of delay and jitter on a
recent first person shooter game. In Proceedings of ACM
SIGCOMM 2004 workshops on NetGames ’04, pages
152–156. ACM Press, 2004.

[13] S. Singhal and M. Zyda. Networked Virtual Environments:
Design and Implementation. ACM Press, Siggraph Series,
New York, 1999.

[14] R. W. Stevens. TCP/IP Illustrated, Volume 2: The
Implementation. Addison-Wesley, 1995.

[15] B. S. Woodcock. An analysis of MMOG subscription
growth – version 18.0.

