
1

Rapid Detection of Constant-Packet-Rate Flows
Kuan-Ta Chen and Jing-Kai Lou

Institute of Information Science, Academia Sinica
ktchen@iis.sinica.edu.tw kaeaura@iis.sinica.edu.tw

Abstract—The demand for effective VoIP and online gaming
traffic management methods continues to increase for purposes
such as QoS provisioning, usage accounting, and blocking VoIP
calls or game connections. However, identifying such flows has
become a significant administrative burden because many of the
applications use proprietary signaling and transport protocols.
The question of how to identify proprietary VoIP traffic has yet
to be solved.

In this paper, we propose using a deviation-based classifier to
identify VoIP and gaming traffic, given that such real-time in-
teractive services normally send out constant-packet-rate (CPR)
traffic with a fixed interval, in order to maintain real-timeliness
and interactivity. Our contribution is two-fold: 1) We show that
scale-free variability measures are more appropriate than scale-
dependent ones for quantifying the network variability injected
into CPR traffic. 2) Our proposed classifier is particularly
lightweight in that it only requires a few inter-packet times
to make a decision. The evaluation results show that by only
analyzing 10 successive inter-packet times, we can distinguish
between CPR and non-CPR traffic with approximately 90%
accuracy.

Index Terms—Online Gaming, Traffic Analysis, Traffic Clas-
sification, Traffic Identification, VoIP

I. INTRODUCTION

VoIP and online gaming have become increasingly popular
in recent years. Meanwhile, the demand for ways to manage
the traffic of these applications has continued to grow for
purposes such as QoS provisioning, usage accounting, and
blocking certain VoIP calls or game connections in enterprises.
For management purposes, the flows generated by such appli-
cations must first be identified.

VoIP flow identification was not a problem until recently
because, in the past, most of the dominant VoIP solutions
employed standard signaling protocols, such as H.323 [14]
or SIP [10]. As a result, traffic from standardized VoIP
systems could be easily identified using publicly-available
monitoring tools [7]. However, some recent VoIP solutions,
which are mostly based on peer-to-peer (P2P) technology, do
not follow standardized signaling and/or transport protocols.
The most well-known examples are probably Skype [1] and
GoogleTalk1 [9]. Specifically, Skype uses proprietary signaling
protocols and randomly-assigned TCP/UDP port numbers.
Moreover, all messages and voice data in Skype communica-
tions are encrypted. Traffic from these applications continues
to cause a significant administrative burden for ISPs and
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027-MY3.

1GoogleTalk actually adopts a hybrid approach comprised of a standard
signaling protocol (SIP) and a proprietary transport protocol [7].

enterprises, as it can bypass firewalls without audit controls.
The question of how to identify proprietary VoIP traffic has
yet to be solved.

Rather than provide a general flow classification framework
based on flow characteristics or application signatures, this
study considers a particular type of traffic, namely, constant-
packet-rate (CPR) traffic. To maintain real-timeliness and
interactivity, VoIP and some real-time network games, such as
Counter-Strike [8], send out packets to interacting parties at
regular intervals. In VoIP applications, the continuous human
voice is encoded and streamed into packets for transmission
with a typical interval ranging from 20 ms to 50 ms2. For
real-time game playing, the updated game states at the server
are sent to each game client at regular intervals in order to
keep the clients’ states up-to-date. These observations form
the motivation of this study: If we can detect CPR flows, then
we should be able to detect VoIP and online gaming flows, as
these two applications normally generate CPR traffic.

Challenges: Intuitively, determining whether a packet
stream is CPR should not be a difficult task, since the inter-
packet times (IPT) would be a constant value. While this
property might be correct when we observe the stream at the
sender host, the IPTs become much more variable, instead of
remaining constant, once the packets have been input to the
network.

Assume a series of successive and equally-spaced packets
have been generated by an application with a fixed interval
T . The packets may incur the following types of network
impairment that would weaken their constant-IPT property
after they have been injected to networks :

• Host Delay: Because modern operating systems are
normally multi-tasking, even if an application wishes to
send out packets regularly, it can only issue a packet
transmission request when it is served by the CPU.
Consequently, the inter-packet times immediately after
packets leave the sending host might be slightly different
from T , depending on the CPU load at that instant.

• Channel Delay: To send a segment on a CSMA/CD-like
network, a host must wait for a period to detect whether
other stations are transmitting data simultaneously. When
a transmission collision occurs, a host should wait for a
random period so as to prevent further collisions. Such
delays would alter the inter-packet times, especially in
wireless networks, where collisions and interference are

2Many recently developed P2P-based VoIP applications, including Skype,
do not support silence suppression; that is, lowering the packet sending rate
while the user is not talking. This design is deliberate, as it maintains UDP
port bindings at the NAT and ensures that environmental sounds can be heard
all the time.
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Fig. 1. The distribution of IPTs with and without disturbance caused
by network impairment (a) Ideal (b) Delay introduced (c) Delay and loss
introduced

much more serious than in wired networks.
• Network Queueing: A packet may be queued for a while

when it passes through a congested link. The queueing
delay depends on the congestion level of the link. Since
the queueing delays incurred by different packets may
not be the same, the IPTs between packets that have been
queued would be altered.

• Network Packet Loss: A packet may be dropped when
passing through a congested link if the packet queue
is full, which will lead to IPTs of multiples of T . For
example, assume a series of three packets, with two
IPTs (T, T ), are to be transmitted over the Internet. If
the middle packet is dropped by a router, then the IPT
between the remaining two papers will be 2T . Similarly,
the IPT value will be kT if a packet loss burst of length
(k − 1) occurs.

The graph in Fig. 1 illustrates the effect of network delay
and loss on the distribution of IPTs in CPR traffic. As shown
in the figure, even though the packets leave the sender with
exactly equal inter-packet times, the IPTs disturbed by network
delays tend to have a wider distribution compared to the
original distribution. Fig. 1(c) shows that the distribution of
IPTs disturbed by both network delays and network loss would
have multiple clusters centered around T, 2T, 3T, ..., kT , if no
packet loss bursts of length longer than k − 1 have occurred.

Contributions: The contribution of this study is three-fold.
1) We propose using a deviation-based CPR-traffic classifier
to identify real-time interactive applications, specifically VoIP
and online gaming. 2) We show that scale-free variability
measures, such as CoV (the coefficient of variation), are more
appropriate than scale-dependent metrics, such as SD (the
standard deviation), for quantifying the network variability in-
curred by CPR traffic. 3) The proposed classifier is particularly
lightweight in that it requires only a few inter-packet times to
make a decision. Our evaluation shows that by analyzing only
10 successive inter-packet times, we can distinguish between
CPR and non-CPR traffic with approximately 90% accuracy.

The remainder of this paper is organized as follows. Sec-
tion II considers related works. We discuss the measurement
methodology and summarize our traces in Section III. In
Section IV, we describe the design of the deviation estimators
and demonstrate their ability to classify CPR and non-CPR
flows. In Section V, we evaluate the performance of different
deviation estimators in terms of classification accuracy, and
identify the sources of misclassifications. Then, in Section VI,

we present our conclusions.

II. RELATED WORK

Traffic identification was not a serious problem until re-
cently because most Internet flows used well-known TCP/UDP
ports, such as port 80 for HTTP, and port 23 for TELNET
services. Thus, a simple inspection of the TCP/UDP port
number field could identify the application associated with
a certain flow [18]. However, the effectiveness of port-based
classification has been largely reduced due to the prevalence
of P2P applications, many of which use random port num-
bers, or even port numbers that have been assigned to other
applications. For instance, HTTP port numbers (80/443) are
often used by P2P applications to traverse a firewall [16].
Thus, a simple inspection of the port number field may lead
to inaccurate classification.

Payload-based Classification To identify a variety of P2P
applications whose protocols are often proprietary, ill-defined,
and even encrypted, a payload-based classification approach
has been proposed in [11, 23].

Payload-based classification relies on a unique signature
carried by application packets, so the identification accuracy
can be very high. Even so, the approach has some major
drawbacks: 1) The packet payload may be inaccessible in a
carrier network because obtaining such information would be
a violation of privacy. 2) Payload pattern matching usually
relies on the flexibility of regular expressions; however, soft-
ware implementations of regular expression matching incur
a heavy computational load, while hardware implementations
may restrict the expression flexibility and the state number
of the transformed DFA (deterministic finite automata). 3) A
proprietary application’s signature may be subject to change at
any time, so payload-based classifiers require frequent updates
of the signature database to detect newly released software.

Flow-Information-based Classification Another traffic
classification approach is based on a summary of flow statis-
tics, such as the flow duration, number of packets, flow inter-
arrival times, and packet inter-arrival times. Machine learn-
ing [15] or statistical clustering techniques [17, 19, 22] are
usually employed to process flow information for classification
purposes. Among the numerous studies, [15] extracts represen-
tative features from bulk data flows, such as HTTP, FTP, and
SMTP, to create a workload model for network simulators.
In [22], traffic is classified into three classes, namely, bulk
data transfer (e.g., FTP), conversational communications (e.g.,
TELNET), and streaming traffic, to provide different levels of
QoS for each class. Meanwhile, [19] uses a reference pattern
approach, which designates the packet size and inter-packet
time as flow features, to identify VoIP flows for management
purposes and QoS provisioning.

A number of studies do not belong to either of the above
categories. The approach proposed in [12] identifies P2P traffic
based on the transport layer characteristics, as P2P applications
usually exhibit distinct connection patterns; for example, they
create both TCP and UDP connections using the same port
number, and establish several connections simultaneously.
BLINC [13] considers the association between Internet hosts
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TABLE I
SUMMARY OF THE COLLECTED TRAFFIC TRACES

Trace Flow # Packet Rate IPT CoV Path Diversity Source

VoIP 1739 (20, 33, 33) pkt/sec 0.37 1106 hosts / 1641 paths National Taiwan University
Counter-Strike 1016 (11, 22, 26) pkt/sec 0.32 271 hosts / 270 paths mshmro.com [3]
TELNET 276 (3, 12, 89) pkt/sec 1.53 140 hosts / 93 paths National Taiwan University
HTTP 409 (3, 13, 117) pkt/sec 1.54 474 hosts / 325 paths WIDE backbone [6]
P2P 1303 (3, 7, 29) pkt/sec 1.63 645 hosts / 644 paths Academia Sinica
World of Warcraft 1611 (4, 5, 10) pkt/sec 0.71 52 hosts / 39 paths National Taiwan University
† The (.05, .50, .95) quantiles of the observed packet rates in one second.

and the applications running on them. Instead of inspecting
individual flows, it looks at all the flows generated by specific
hosts. BLINC is therefore able to accurately associate hosts
with the services they provide or use.

The present study differs from the above works in the fol-
lowing respects: 1) Rather than provide a general framework
to classify all Internet traffic, we identify a specific kind of
traffic—constant-packet-rate (CPR) traffic, which is usually
associated with real-time interactive applications, notably VoIP
and fast-paced online games. 2) Our approach only operates
on network-level information and uses a) the five-tuples to
identify a flow, and b) the intervals between a few successive
packets, without transport-level information, such as port num-
bers, even application-level information. While our approach
cannot classify network flows into specific applications, it
can efficiently identify CPR flows for management and QoS
provisioning purposes. Moreover, it can also be used as a
lightweight front line for an application-specific flow classifier
to reduce the processing overhead.

III. TRACE COLLECTION

We evaluate the proposed deviation-based classifiers for
CPR and non-CPR flows based on Internet traffic traces. As
packet inter-spacing times are highly sensitive to the capacity,
router configurations, and varying cross-traffic along a network
path, the trace collection was conducted in a way that includes
as much path diversity as possible.

We select six network applications, two of which are CPR-
based and four are non-CPR-based. Skype [2], a popular
VoIP software, and Counter-Strike [8], a popular first-person
shooting game, are selected as representative of CPR ap-
plications. Skype is known to use either iLBC and iSAC
codec depending on the network conditions [4]. The iSAC
codec may use different encoding bit rates and packetization
frequencies depending on the host’s CPU usage and network
congestion levels; however, as the adaptation of the packet
rate is infrequent, Skype traffic can be seen as CPR in a short
time-scale. On the other hand, we select TELNET, HTTP,
P2P, and World of Warcraft, a popular MMORPG (Massively
Multiplayer Online Role-Playing Game) as representative of
non-CPR applications.

The collection procedures for specific traces were as fol-
lows. 1) Skype traffic was captured according to the procedures
detailed in [4]. 2) TELNET traffic was captured on a gateway
router for all TCP flows using port 22 (SSH) and port 23
(telnet); all intra-campus traffic was removed. 3) World of
Warcraft traffic was captured on a gateway router for all

TCP flows with port number 3274 and either the source or
destination address within the network 203.66 (where the
World of Warcraft server in Taiwan resides). 4) P2P traffic
was captured on a dedicated PC running BitComet, a variant
of BitTorrent client [21]. As the BitTorrent protocol does not
use a fixed port number, we only recorded flows that used port
numbers higher than 1024.

The collected traffic traces are summarized in Table I. To
ensure there were sufficient packet samples in each flow, we
removed flows containing less than 2, 000 packets. The IPT
CoV field denotes the overall coefficient of variation of inter-
packet times in each trace (see Section IV-B1). It indicates that
CPR applications have lower IPT variability than non-CPR
applications. The path diversity field summarizes the number
of hosts and host-pairs involved in each trace. It shows that
most of our traces contained a considerable number of network
paths (> 1, 000). The degree of path diversity is especially
important to our study, as the network dynamics is one of the
key factors that can make CPR traffic less distinguishable from
non-CPR traffic. In view of this factor, we believe that, to a
certain degree, our traces are appropriate for classifying CPR
and non-CPR traffic in terms of traffic variability inherited
from the Internet dynamics.

IV. DEVIATION-BASED CLASSIFICATION

In this section, we discuss how we classify CPR and non-
CPR traffic based on their short-term deviation measures. By
definition, CPR traffic should be easily identifiable, since its
inter-packet times (IPTs) are perfectly constant. However, CPR
traffic may inherit variability, such as delay and loss, from the
network and applications (in the form of dispersed IPTs), and
become more similar to non-CPR traffic.

To assess whether IPT variability can be an effective indi-
cator of CPR traffic, we first analyze the IPT distributions
of different applications, which can be inferred from their
respective long-term packet arrival processes. Then, we discuss
the design of a robust estimator to infer IPT deviations from
a short packet arrival series. We conclude this section with a
graphical presentation to illustrate how the derived short-term
IPT deviations are used to classify CPR and non-CPR traffic.

A. Inter-Packet Time Distribution

To identify discrepancies in the distribution of IPTs in
different applications, we plot the histogram of the IPTs from
each trace in Fig. 2. The IPT histogram provides an intuitive
way to observe the long-term deviation of packet inter-arrival
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times, on a time scale roughly equal to the duration of the
flows. The histograms in Fig. 2 can be interpreted as follows. If
the long-term IPT distribution of an application is heavily con-
centrated within a small range, it is reasonable to expect that
the application’s short-term IPT deviations will also be small.
However, the opposite is not always true. If the long-term IPTs
are widely distributed, then the corresponding short-term IPT
variation might be small, moderate, or large—depending on
how the IPTs are temporally auto-correlated. For example,
if IPTs are positively auto-correlated, indicating that a small
(large) IPT is likely to be followed by a small (large) IPT, then
their small-scale burstiness tends to be small. In contrast, if
IPTs are negatively auto-correlated, which implies that small
and large IPTs are apt to occur alternately, then the short-term
IPT deviations tend to be large.

As one might expect, the IPTs of CPR applications, VoIP
and Counter-Strike in Fig. 2, are heavily clustered with a
mode smaller than 100 ms. Moreover, most of the IPTs are
not far from the cluster’s center. Non-CPR applications—
HTTP, P2P, TELNET, and World of Warcraft—also have a
considerable number of IPTs clustered around a small value
(at scales of 10 ms or smaller). They also have IPTs widely
spread over the range of the x-axis, which clearly manifests
the non-CPR nature of their traffic patterns. Interestingly, the
IPT distributions associated with non-CPR traces are all multi-
modal. We consider that the 200 ms peaks are due to TCP’s
Nagle algorithm and delayed-ack mechanism [24], while the
remaining peaks are probably due to the application’s design.
In particular, we find that the pronounced peaks at 200 ms
and 500 ms in the World of Warcraft trace occur because
the game exchanges data with regular time intervals. This
design is common in network games for maintaining the state
consistency between peers [5].

We also provide the coefficient of variation (CoV) of the
IPTs above each figure. The value of the CoV provides a scale-
independent way to quantify the dispersion of IPTs. Clearly,
the IPT CoV for the VoIP and Counter-Strike traces (< 0.7)
is significantly smaller than those of non-CPR applications
(> 1.5), while the IPT CoV of the World of Warcraft trace
is approximately in-between the two extremes. It seems that
a simple variability measure like the CoV may already be
a useful indicator of whether a flow is CPR or not. Even
so, whether IPT deviations inferred from short-term IPT
series, rather than long-term IPT series, can achieve similar
classification accuracy remains a question. In the rest of this
paper, we attempt to answer this question.

B. Estimating Short-Term IPT Deviation

In Fig. 2, the long-term IPT deviation seems to be a decisive
feature for distinguishing CPR flows from non-CPR flows, as
the former exhibit a much smaller degree of IPT dispersion.
However, in practice, IPT deviations must be computed based
on short-term observation of packet arrivals for the following
reasons:

• Many applications, such as usage accounting and traffic
blocking, require the classifier to make a very quick
decision (e.g., in sub-seconds).
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Fig. 2. IPT distribution of different applications

• The classifier must keep a flow’s state in its memory
before a decision can be made. Thus, the faster the
detection, the less time a flow’s state needs to be kept.
Consequently, more flows can be served simultaneously
with the same amount of memory.

Therefore, even if the dispersion of a long IPT sequence can
be used to accurately identify whether a flow is CPR or not, we
have to limit the length of an IPT series so that we can obtain a
quick decision. The difficulty is that, while long IPT sequences
are primarily governed by an application’s traffic patterns, a
short IPT series is less robust and less reliable for inferring the
“true” traffic patterns (such as the variability) of an application.
This is because the amount of traffic characteristics captured
by short packet sequences depends on the sampling time
and varying network conditions. In other words, short-term
IPT variability, though inherited from the application traffic
variability, might be dominated by sampling randomness and
network dynamics.

Because of the detection time and unavoidable randomness,
we need an estimator for short-term IPT deviations that has
the following properties:

1) It should be able to cope with the randomness introduced
by sampling and network dynamics.

2) It should achieve high discriminability between CPR and
non-CPR traffic.

3) It should incur the lowest possible storage and compu-
tation overhead.

More specifically, the desired estimator should obtain low de-
viation measures for CPR traffic, and high deviation measures
for non-CPR traffic, regardless of the inevitable randomness
introduced in packet arrival sequences.

In the following, we discuss three aspects of designing
an IPT deviation estimator, namely, the deviation metric, the
sample size w, and the smoother size s. We list a number of
possible designs with regard to each aspect, and the reasons
why they deserve to be considered. Hereafter, we use “IPT
deviation(s)” to denote short-term IPT deviation(s).

1) Deviation Metric: In statistics, there are numerous mea-
sures for quantifying the degree of spread, or variability, in
a set of numbers because different metrics usually emphasize
different portions of “variability” in the data. For example,
some metrics, such as the median absolute deviation (MAD),
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Fig. 3. IPT deviation distributions computed by different variability metrics

put more weight on the data around the center, while others,
such as the range, capture the degree of spread of extreme
values without considering the remaining data.

Without a priori knowledge about the variability compo-
nents should we emphasis, i.e., whether the center or the tail
of the IPT distribution yields a more representative measure?
We list the candidate metrics below:

• Standard deviation (SD): This is one of the most widely
used variability estimators. It is the square root of the
variance, which is approximately the average of the
squared distance from the mean. Squaring the distance
from the mean indicates that more weight is given to
data farther from the center; thus, the SD can be greatly
affected by the tail behavior.

• Coefficient of variation (CoV): The CoV is defined
as the ratio of the standard deviation to the mean. For
this reason it is a dimensionless number that allows
comparison between data sets with different scales.

• Mean absolute deviation (MD): This measure is like the
standard deviation, but it does not square the distance to
the mean; hence, it is less affected by extreme values than
the standard deviation.

• Median absolute deviation (MAD): This measure is
similar to the mean absolute deviation, except that the
central tendency is computed by the median instead of
the mean. Because the median is a more robust estimator
of the center, the tail data have less influence on the
calculation of the MAD than they have on MD.

• Inter-quantile range (IQR): This measure is the value
of the 75th percentile minus the value of 25th percentile.
As the values in the first and fourth quantiles are not con-
sidered at all, this estimator only measures the variability
of data near the center.

• Range: This measure is only based on the lowest and
highest extreme values in the data set. In contrast to
the IQR, the spread near the center of the data is not
captured at all; thus, it is obviously very sensitive to
extreme values.

To demonstrate the difference between the listed metrics,
we divide the IPT series of each flow into a non-overlapping
30-IPT sub-series, and take a deviation measure from each
sub-series. The distributions of deviation estimates based on

different metrics are plotted in Fig. 3. Because of the difficulty
of displaying different metrics on the same scale at the same
time, the result of the CoV metric is not included. We can
see from the figure that, overall, the deviation estimates of
VoIP and Counter-Strike are generally small and concentrated
around a certain value. Those of TELNET and HTTP have a
wider distribution and a mode of slightly larger magnitude.
Meanwhile, P2P and World of Warcraft have very diverse
IPT deviation estimates and large modes, whose magnitude
is dependent on the metric used.

In terms of the deviation metrics, MAD exhibits the most
concentrated distribution of all the measures, which demon-
strates its conservative nature in dispersion estimation. The
sensitivity of the deviation measures to extreme values can
also observed in the magnitude of the deviation distributions
of the P2P trace, in that smaller deviation estimates generally
indicate a metric’s insensitivity to the tail. According to the
figure, the susceptibility of the metrics to tail values is ordered
as follows:

Range > SD > MD > IQR > MAD,

which is consistent with the statistical meaning of each metric.
The different characteristics of the deviation metrics can

also be observed in the plot of the World of Warcraft trace,
in which the distributions of IQR and MAD estimates are bi-
modal, while those of the remaining metrics are uni-modal. If
an IPT sample (30 IPTs in this case) includes IPTs from both
modes, the metrics that take account of tail data (such as the
SD) would yield moderate dispersion measures. Meanwhile,
robust estimators (such as the IQR and MAD) would yield
either small or large dispersion measures depending on the
exact composition of IPTs in the respective clusters.

2) Sample Size: To efficiently determine a flow’s type,
i.e., CPR or non-CPR, and reduce the memory required to
store flow states, samples that contain only a small number of
IPTs are preferred. However, small samples also lead to less
reliable estimation of IPT deviations. Thus, the decision about
sample size is a trade-off between classification accuracy and
time/space complexity for CPR flow detection.

We find that a small sample containing only a few IPTs may
not be able to capture an application’s traffic patterns. That
is, even for a highly variable traffic stream, there might be
a non-insignificant probability that a few consecutive packets
will be released with nearly constant intervals. In addition, the
traffic generated by many applications usually exhibits posi-
tive auto-correlations to a certain degree. A positively auto-
correlated packet stream possesses a characteristic whereby the
IPT deviation of successive packets is generally small if the
time span of packet sampling is shorter than the time scale
at which the auto-correlation effect diminishes. This feature
may considerably reduce non-CPR flows’ traffic variability
estimates and make those flows less distinguishable from CPR
flows.

To obtain robust estimates of IPT variability in a short time,
we consider sample sizes ranging from 3 to 30 IPTs. The
maximum sample size of 30 IPTs is chosen simply because
it takes approximately one second to observe 30 packets for
VoIP traffic, as the VoIP packet rate normally spans 15–50
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Fig. 4. IPT deviation distributions computed with various sample sizes

packets per second [4]. With this setting, the flow states have
to be kept in memory for about one second, which may incur
a high overhead for a classifier under a heavy traffic load. For
example, in a scenario where an average of ten thousand flows
are established in one second, each flow requires 100 bytes for
state maintenance at an average rate of 15 packets per second.
Hence, at least a 2-MB SRAM is required to maintain the
states for that have yet to be classsified flows.

In Fig. 4, we plot the distributions of IPT deviations derived
from samples of different size. We make two observations
from the figure. First, the IPT deviations captured by small
samples (e.g., w < 10) are not robust enough and may differ
drastically depending on the particular IPTs observed. This
explains why IPT deviation distributions for small samples
show multiple peaks for non-CPR traces. Second, although
large samples have more consistent deviation estimates, they
generally capture more variability and lead to higher estimates
(identified by modes of larger magnitude). This is because
longer packet sequences are more likely to include irregular
packet arrivals and occasional randomness introduced by net-
work dynamics.

3) Smoother Size: The sample size provides a means of re-
stricting the time scale at which deviation estimates are taken;
however, the granularty of deviations is always measured at
the scale of packet inter-spacing times.

Consider a scenario where the application, host, and net-
work have introduced considerable randomness into a CPR
packet stream. As a result, the stream’s IPT deviations become
large, and thus not easily distinguishable from non-CPR traffic.
In this case, we can apply a smoother to remove short-term
IPT fluctuations before calculating the deviation estimates. For
an IPT sample of size w3, (ipt1, ipt2, ..., iptw) and smoother
size s, the smoothed IPT series of size w/s is computed as
(
∑s

i=1 ipti/s,
∑2s

i=s+1 ipti/s, ...,
∑w

i=w−s+1 ipti/s). With an
appropriate smoother of size s, we can remove IPT fluctuations
in time scales smaller than s × mean(ipt). The deviation
estimates are then derived from this smoothed series.

We apply smoothers with sizes ranging from 2 to 10 IPTs
and compute the IPT deviation estimates using the CoV metric.
As shown in Fig. 5, the larger the smoother size, the smaller

3For simplicity and without loss of generality, we assume that w = k ×
s, k ∈ N.
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Fig. 6. Differences between our VoIP traffic and non-CPR traffic traces based
on deviation estimates (CoV, w = 10 and s = 1)

the deviation estimates we obtain. On the one hand, we expect
the smoothers to remove undesirable fluctuations injected into
CPR packet streams. On the other hand, smoothers that are
too large may unnecessarily remove the intrinsic variability
of non-CPR traffic. Thus, choosing the smoother size is also
an important issue in designing an appropriate IPT deviation
estimator.

C. Graphical Demonstration

Having discussed several aspects of designing an estimator
for short-term deviations of IPTs, we now use a graphical
demonstration to illustrate how the deviation estimates are
used for the classification of CPR and non-CPR traffic.

In Fig. 6, we plot the IPT deviation distributions for VoIP
and each non-CPR traffic trace, where the deviation estimator
used is comprised of the CoV metric, a 10-IPT sample size
(w = 10), and no smoothing (s = 1). We can see from the
graphs that VoIP traffic clearly has very different IPT deviation
distributions to those of non-CPR traffic. The vertical dashed
line marks the threshold value that has the most discriminative
power. The number following each trace name denotes the
discrimination accuracy, which is computed as the number of
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correct classifications (both false positives and false negatives)
divided by the number of samples.

This demonstration shows that even a small 10-IPT sample
can be used to classify CPR and non-CPR flows with an
accuracy higher than 80%. The accuracy can be boosted to
nearly 90% if a sample size of 30 IPTs is used. Although
this suggests the feasibility of using short-term-deviation-
based classification for CPR and non-CPR traffic, we still
need to address the following questions: 1) “What is the
limit of this classification approach?” 2) “Why and how do
misclassifications occur?” We consider these issues in the next
section.

V. PERFORMANCE EVALUATION

In this section, we evaluate the classification performance of
a variety of IPT deviation estimators. Our purpose is twofold:
1) to understand the performance and limits of IPT-deviation-
based classifiers; and 2) to identify the estimator that possesses
the most robust discriminative power.

We begin by evaluating the effect of the deviation metric and
sample size on an estimator’s ability to classify CPR and non-
CPR flows, after which we consider the effect of the smoother
size. Then, we analyze the sources of misclassifications by
breaking the evaluation into a per-application analysis. For
simplicity, we use “CPR discriminability” to denote a devia-
tion estimator’s ability to discriminate between CPR and non-
CPR traffic.

Performance Metric In this section, we use AUC (Area
Under the Curve) to compare the classification performance of
deviation estimators. AUC is the area under the ROC (Receiver
Operating Characteristic) curve, which is is formed by the ratio
of true positives (sensitivity) and the ratio of false negatives
(1−specificity) over the entire range of possible cutpoints. The
AUC is generally referred to as the discrimination ability of a
classifier. As a rule of thumb, an AUC value higher than 0.8
indicates generally good discrimination, while a value of 0.5
is equivalent to a random guess.

A. Effect of Deviation Metric

Fig. 7 shows the effect of the deviation metric and sample
size on CPR discriminability. The result indicates that more
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Fig. 8. ROC curves based on various sample sizes (CoV, s = 1

robust deviation metrics generally lead to worse discrimina-
tion, which is exemplified by the fact that MAD and IQR
yield much lower discrimination values than the other metrics.
This behavior implies that non-CPR traffic is undistinguishable
from CPR traffic, as its intrinsic variability is underestimated
by robust variability measures. However, the discrimination
ability is not always higher for metrics that are more sensitive
to tails, as the most sensitive metric, i.e., the range, does not
yield the best performance. Generally speaking, the SD, MD,
and range metrics have approximately the discriminability,
although the SD performs slightly better than the other two.

The only dimensionless metric, CoV, performs better than
its scale-dependent variant, SD, especially when the sample
size is small. As the numerator of the CoV metric is equal to
that of SD, so the discrepancy in performance must be due to
the denominator of CoV, i.e., the average IPT. Our analysis
shows that, for non-CPR traffic, the average IPT can be very
small depending on the composition of IPTs observed (see
Fig. 2), which leads to high CoV estimates. For example, while
the SDs of series (10, 20, 30) and (30, 40, 50) are identical
(both are 10), the CoVs of the two series have a ratio of
2:1 (0.5 and 0.25 respectively). With the occurrence of small
average IPTs, the high deviation estimates of non-CPR flows
make them more distinguishable from CPR flows. This effect
diminishes with the increase in sample size, as the average
IPT is less likely to be extremely small; in fact, it tends to
converge to the IPT population mean.

B. Effect of Sample Size

With regard to the sample size, as shown in Fig. 7, larger
samples consistently lead to better classification efficiency,
except for the two most robust deviation metrics, MAD and
IQR. However, the increase in CPR discrimination ability with
larger samples is sub-linear; in other words, the marginal
return decreases as the sample size increases. Thus, in view of
the classification accuracy and time/space overhead required,
it is not easy to choose the best sample size. In fact, the
choice usually depends on the particular context. We consider
that a 10-IPT sample size is generally a good choice because
it achieves reasonable discriminability and does not require
much time to collect IPT series.
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In Fig. 8, we plot the ROC curves that correspond to the
deviation estimators comprised of the CoV metric and samples
of different size to evaluate their classification performance.
In an ROC plot, the top-left area denotes higher true positive
rates and lower false positive rates. We can see that the curves
shift toward the top-left region as the sample size increases,
along with a decrease in marginal utility. Generally, the true
positive rate increases much faster than the false positive rate,
which is an indication of a good classifier. The curves also
reveal that the false positive rates are non-insignificant (10%
for w = 10, and 5% for w = 30) when the true positive
rate reaches 90%, even when the sample size is large. This
indicates that non-CPR traffic may comprise CPR-like packet
sequences that mislead the classifiers. We address this issue
and determine the source of the false positive classifications
in Section V-D.

C. Effect of Smoother Size

We now investigate the effect of the smoother size on
CPR discriminability. Fig. 9 shows the classification efficiency
of deviation estimators comprised of the CoV metric and
smoothers of different size. The CoV metric is chosen for
its generally good discrimination performance.

The result shows that, although smoothers may improve
the classification performance under certain conditions, the
increase is marginal. There is only an improvement when
the sample size is large and the smoother size is not com-
parable to the sample size. One possible explanation of this
phenomenon is that, while a single IPT may be affected by
large disturbances from the application or network, the average
IPTs across a few packets might be better able to capture the
original application’s traffic variability. However, smoothers
reduce the AUC value when the smoother size is comparable
to the sample size. As smoothers are unable to significantly
improve classification efficiency and may even reduce the
accuracy, we conclude that IPT smoothing prior to taking
deviation estimates is not helpful.

D. Error Analysis

Fig. 7 shows that the AUC does not increase unboundedly,
but converges at approximately 0.93 as the sample size in-
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Fig. 11. Flow classification error analysis for CoV deviation estimator

creases. To determine the sources of misclassifications and
understand why they occur, we evaluate the discrimination
performance of CPR traffic and individual non-CPR traffic
streams, as shown in Fig. 10.

The result for non-CPR applications can be divided into
two groups. TELNET and World of Warcraft traffic is not
easily distinguishable from VoIP traffic (AUC ≈ 0.85 with
w = 10), while HTTP and P2P traffic is much more distinct
from CPR traffic (AUC > 0.95 with w = 10). We note that
the applications with worst classification performance are both
interactive, while the remaining two are both bulk transfer
applications.

What makes TELNET and World of Warcraft traffic less
distinguishable from CPR traffic? To determine whether par-
ticular traffic patterns affect the classification accuracy, the
histograms of the average IPTs of correctly- and mis-classified
samples for each non-CPR trace are plotted in Fig. 11. The
graph reveals that the false positive samples (those mis-
classified as CPR) for TELNET and World of Warcraft traces
have no particular relationship with average IPTs, as the
average IPTs of true-positive and false-positive samples have
approximately identical distributions. One possible explanation
for the poor discrimination for these two traces is the appli-
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cation behavior. For TELNET traffic, because the packets are
initiated by humans, whose typing activities can be modeled
as exponential inter-packet times with a certain degree of auto-
correlation [20], it is reasonable to find IPT samples with low
burstiness, especially when the sample size is small. For World
of Warcraft traffic, we find that the game peers occasionally
exchange messages with 200 ms or 500 ms intervals (see
Fig. 2); thus, if an IPT sample includes some of the regularly-
released packets, it will probably be classified as CPR.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed using inter-packet times to
detect VoIP and online gaming traffic based on their distinct
traffic characteristics—constant inter-packet times. We have
shown that CPR traffic, after inheriting the randomness from
the application and the network dynamics, may no longer
possess the constant-IPT property. We have also examined
various issues in the design of IPT deviation estimators
for classifying CPR and non-CPR traffic. The performance
evaluation shows that the dimensionless variability measure,
CoV, achieves the best performance in terms of discrimination
efficiency; a sample size of 10 IPTs can yield a reasonable
classification accuracy (≈ 90%).

Although the deviation-based CPR-traffic detector discussed
in this paper achieves a reasonable performance, it generates
a not insignificant number of misclassifications. Two reasons
for the misclassifications are an application’s nature and a
small sample size. How to improve classification accuracy
without increasing the sample size is an issue we will address
in our future research. In addition, for packet streams passing
through a lossy path (very congested Internet links or noisy
wireless links), the IPT variability for CPR traffic increases
substantially due to excessive packet loss. Moreover, for
flow classification on a high speed link, a certain degree of
packet sampling would be beneficial to reduce the processing
overhead. In our future work, we will further improve the
deviation-based classifier, so that it is robust against both
intentional or unintentional packet loss events.
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