
Game Bot Detection Based on Avatar
Trajectory�

Kuan-Ta Chen1, Andrew Liao2, Hsing-Kuo Kenneth Pao3, and Hao-Hua Chu2

1 Institute of Information Science, Academia Sinica
2 Dept. of Computer Science & Information Engineering, National Taiwan University
3 Dept. of Computer Science & Information Engineering, National Taiwan Univ. of

Science & Technology

Abstract. In recent years, online gaming has become one of the most
popular Internet activities, but cheating activity, such as the use of game
bots, has increased as a consequence. Generally, the gaming community
disagrees with the use of game bots, as bot users obtain unreasonable
rewards without corresponding efforts. However, bots are hard to detect
because they are designed to simulate human game playing behavior
and they follow game rules exactly. Existing detection approaches either
interrupt the players’ gaming experience, or they assume game bots are
run as standalone clients or assigned a specific goal, such as aim bots in
FPS games.
In this paper, we propose a trajectory-based approach to detect game
bots. It is a general technique that can be applied to any game in which
the avatar’s movement is controlled directly by the players. Through
real-life data traces, we show that the trajectories of human players and
those of game bots are very different. In addition, although game bots
may endeavor to simulate players’ decisions, certain human behavior
patterns are difficult to mimic because they are AI-hard. Taking Quake
2 as a case study, we evaluate our scheme’s performance based on real-
life traces. The results show that the scheme can achieve a detection
accuracy of 95% or higher given a trace of 200 seconds or longer.

Key words: Cheating Detection, Online Games, Quake, Security, Su-
pervised Classification, User Behavior

1 Introduction

In recent years, online gaming has become one of the most popular Internet activ-
ities. However, as the population of online gamers has increased, game cheating
problems, such as the use of game bots, have become more serious. Game bots
are automated programs with artificial intelligence that players use for different
� This work was supported in part by Taiwan Information Security Center (TWISC),

National Science Council under the grants NSC 97-2219-E-001-001 and NSC 97-2219-
E-011-006. It was also supported in part by Taiwan E-Learning & Digital Archives
Program (TELDAP), National Science Council under the grants NSC 96-3113-H-
001-010 and NSC 96-3113-H-001-012.



purposes. In MMORPGs (Massively Multiplayer Online Role Player Games),
players can save a great deal of time by using bots to perform repetitive tasks,
such as slashing low-level monsters, or fishing in a river to master the avatar’s
fishing skills. In FPS (First-Person Shooter) games, users can employ bots to
play in place of themselves in order to get high scores and gain a reputation in
the community.

Generally, the gaming community disagrees with the use of game bots, as
bot users obtain unreasonable rewards without corresponding efforts. However,
game bots are hard to detect because they are designed to simulate human game
playing behavior and they follow game rules exactly. Some bot detection stud-
ies [1, 2] propose using CAPTCHA tests during a game to determine whether
an avatar is actually controlled by a person. Although this method is effective,
it interrupts the game play and degrades players’ feelings of immersion in the
virtual world [3,4]. Alternatively, passive detection approaches, such as schemes
based on traffic analysis [5, 6] and schemes based on avatars’ shooting accuracy
in FPS games [7], can be used. The former approach assumes that a game bot
works as a standalone client, and the latter is only valid for detecting aim bots
in shooting games.

In this paper, we propose a general approach for all genres of games where
players control the avatar’s movement directly. Our approach is based on the
avatar’s movement trajectory during a game. The rationale is that the trajectory
of the avatar controlled by a human player is hard to simulate. Players control
the movement of avatars based on their knowledge, experience, intuition, and a
great deal of information provided in the game. Since human decisions may not
always be logical and efficient, how to model and simulate realistic movements
is still an open question in the AI field. To distinguish human players from game
bots efficiently, we analyze the trajectories of both player types and distinguish
between the trajectories according to their spatial and temporal characteristics.
We choose Quake 2 as our case study because it is a classic and popular FPS
game, and many real-life human traces are available on the Internet. Therefore,
we can use such traces to validate our proposed scheme.

The contribution of this paper is two-fold. 1) We propose a trajectory-based
approach for detecting game bots. It is a general model that can be applied to
any game in which the avatar’s movement is controlled by the players directly. 2)
Using real-life human traces, the performance evaluation results show that the
scheme can achieve a detection accuracy of 95% or higher when the trace length
is 200 seconds or longer. Because it is difficult to simulate human players’ logic
when they control game characters, we believe this approach has the potential
to distinguish between human players and automated programs and thus merits
further investigation.

The remainder of this paper is organized as follows. Section 2 contains a
review of related works. In Section 3, we introduce our game case study, Quake 2,
and describe the game trace collection methodology. We analyze the similarities
and differences between the trajectories of different types of players in Section 4.
In Section 5, we propose an identification scheme and demonstrate its ability in



terms of the distribution of discriminative features. In Section 6, we evaluate the
performance of the proposed scheme with the consideration of the trace length.
Then, in Section 7, we summarize our conclusions.

2 Related Work

Recently, anti-cheating software programs, such as PunkBuster and GameGuard,
have been widely deployed in online games to prevent cheating. Such software
is bundled with game clients, so it cannot be uninstalled even if the game client
has been removed. It works by hiding in the game client process, monitoring the
entire virtual memory space (to prevent modification of the game’s executable
images), blocking suspected programs that might be hacker tools, and blocking
certain API calls. This kind of software can detect nearly all plug-in tools that
attach to a game client program to inspect or modify game states when the game
is running. Unfortunately, it cannot stop the widespread use of standalone bots,
including the bot series we study in this paper. The reason is that these anti-
cheating software programs are host-based, so they must be installed on players’
PCs to be effective. Standalone bots, on the other hand, can function without
clients, and it is unlikely that anti-cheating tools would be installed on PCs
where the bots are running. This claim is strongly supported by the fact that
game bots are still active in games protected by PunkBuster or GameGuard,
e.g., Quake (PunkBuster) and Lineage4 (GameGuard).

3 Data Description

3.1 Human Traces

Quake 2 supports a game-play recording function that keeps track of every action
and movement, as well as the status of each character and item throughout the
game. With a recorded trace, one can reconstruct a game and review it from any
position and angle desired via VCR-like operations. Players often use this func-
tion to assess their performance and combat strategies. Moreover, experienced
players are encouraged to publish their game-play traces as teaching materials
for novice gamers and thereby build a reputation in the community.

To ensure that our game traces represented the diversity of Quake players, we
only used traces that players had contributed voluntarily. The human players’
traces were downloaded from the following archive sites: GotFrag Quake5, Planet
Quake6, Demo Squad7, and Revilla Quake Site8. We restricted the traces to
the map The Edge, one of the most well-known levels of death-match play. On
this map, the only goal is that each player should kill as many other players
4 http://boards.lineage2.com/showflat.php?Number=573737
5 http://www.gotfrag.com/quake/home/
6 http://planetquake.gamespy.com/
7 http://q2scene.net/ds/
8 http://www.revilla.nildram.co.uk/demos-full.htm



Table 1. Trace Summary

name num mean total active

1 Human 93 2 hour 203.5 hour 91%
2 CR 24 19 hour 448.8 hour 91%
3 Eraser 15 20 hour 296.4 hour 94%
4 ICE 18 20 hour 358.8 hour 67%

as possible, until the time limit is reached. Because short traces contain little
information, we only collected traces longer than 600 seconds.

3.2 Bot Traces

There are many game bots available for Quake 2. For this study, we selected
three of the most popular bot programs for trace collection, namely CR BOT
1.14 [8], Eraser Bot 1.01 [9], ICE Bot 1.0 [10]. We collected 1, 306 hours of
traces in total, as shown in Table 1. In CR Bot and Eraser Bot, all human
players and bots were active most of time (≥ 90%). There was less activity in
ICE Bot because it often remained idle in some places waiting for an opportunity
to ambush other players.

4 Discriminative Analysis

In this section, we compare the avatar trajectories of human players and game
bots. First, we compare the navigation patterns of the two player types and
consider their individual trajectories. We then identify the most significant dis-
criminative characteristics of the respective trajectories and incorporate them
into the proposed bot identification scheme.

We construct the aggregated navigation pattern of each player type by plot-
ting all the observed coordinates in all traces of the particular player type on a
graph, as shown in Fig. 1. The areas of high density in each figure are the places
that players visit more frequently, while the sparse areas represent buildings or
other types of obstacles that players cannot pass. The figures show that the
game level is formed by squares, plazas, and narrow corridors. This arrangement
is designed specifically for death-match play, as the winding routes provide cover
for players to hide, and the narrow corridors lead to intense fighting if players
confront each other in these places. We observe that, even though all the move-
ment traces were collected on the same map, the navigation patterns of different
player types are dissimilar. We summarize the differences below.

1. Human players tended to explore all areas on the map; thus, Fig. 1(a) shows
the most complete terrain of the level. In contrast, the routing algorithms of
game bots may have had difficulty navigating to some places, so they never
visited some parts of the map. For example, the bottom left-hand corner of



(a) Human players (b) CR Bot

(c) Eraser Bot (d) ICE Bot

Fig. 1. Presence locations of all players

the CR Bot navigation map in Fig. 1(b) does not indicate the presence of
bots.

2. To reduce the probability of being attacked, human players normally avoid
open spaces. Therefore, in Fig. 1(a) we observe that human players avoided
the plaza in the middle of the map, and stayed in the surrounding corridors
instead. This is indicated by the high density of plots in the corridors. In
contrast, game bots often stay in the central plaza, probably because it
occupies a large space and it is easy to get everywhere from this area.

3. Even though human players spend most of their time in narrow areas and
confined rooms, there are large variations in their trajectories. There are two
reasons for this phenomenon. 1) The width of the main routes is quite large.
Rather than stay in the middle of a route, players move irregularly within
the limited space. This may be due to players’ preferences; hence, some
players may move along the wall of the path, while others may walk straight,
unless the avatar is blocked by a wall or other obstacles. 2) As fights may
occur anytime-anywhere, human players often move strategically to dodge
current or potential attacks. On the other hand, we find that different game
bots adopt very different movement patterns over the routes. The movement
paths of CR Bot and Eraser Bot (Fig. 1(b) and Fig. 1(c) respectively) are
dense and easy to see. This suggests that these bots tend to follow exact
movement patterns when moving through the same corridor. In contrast, ICE



Bot (Fig. 1(d)) exhibits a nearly uniform distribution over all possible points
on the map. This implies that its routing algorithm decides the avatar’s
direction rather than its exact movement pattern, so that the probabilities
of all points on the route are roughly equivalent.

Clearly, there are substantial differences between the aggregated navigation
patterns of human players and those of each game bot because the bots’ routing
patterns are very different from the movement behavior exhibited by human
players.

5 Bot Detection Scheme

Our objective is to classify human players and game bots efficiently and ac-
curately. To this end, we integrate the spatial and temporal differences in the
trajectories of avatars controlled by different player types to develop a bot identi-
fication scheme. In this section, we first describe the set of discriminative features
extracted from the avatar trajectories, and then explain how we use the features
to classify game bots and human players.

5.1 Feature Extraction

Given a segment of a trajectory, {xt, yt}, 1 ≤ t ≤ T , we extract the following
features from this two-dimensional time series.

1. ON/OFF Activity First, we note that avatars in the game play do not move
all the time. Sometimes they may stop to check if any opponents are around,
wait for opponents to enter an area, wait for regeneration of their weapons or
ammunition, or simply take a rest. The alternate moving and idle behavior forms
an ON/OFF movement pattern. We define ON periods as consecutive periods
of movement longer than 1 second, and OFF periods as the remaining time
frames. The duration and frequency of ON/OFF periods are decided by the
players’ styles and the bots’ AI logic. For example, aggressive players may keep
moving all the time, while cautious players may stay in one place to monitor their
surroundings. Therefore, we define four features based on ON/OFF activity: the
mean and standard deviation of ON periods, and those of OFF periods.

Fig. 2 shows the distributions of the four features. The mean and standard
deviation of human players’ ON periods are significantly higher than those of
game bots. This indicates that human players are more aggressive as they tend
to move all the time. In addition, the mean and standard deviation of human
players’ OFF periods are longer than those of bots, which implies that human
behavior is more irregular and unpredictable in that they may wait for a longer
time after a long move. The figure shows that human players and game bots
differ in terms of ON/OFF activity. Hence, we believe that the four features
based on these activities could be useful for bot detection.



Human CR Eraser ICE

0
50

15
0

25
0

On Period Mean

Human CR Eraser ICE

0
50

10
0

20
0

On Period SD

Human CR Eraser ICE

5
10

15
20

Off Period Mean

Human CR Eraser ICE

0
5

15
25

35

Off Period SD

Fig. 2. The distribution of features related to ON/OFF periods.

2. Pace In games, avatars are generally allowed to move at different speeds and
in different ways, such as running, slow walking, step-by-step walking, lateral
shifting, and moving backwards. In addition, players can stop the current move-
ment and proceed with another movement in different direction in sub-seconds;
therefore, the resulting avatar movements can be highly variable. One simple
way to characterize the dynamics of an avatar’s movement is by the pace of its
movements. We define the pace as the displacement of an avatar’s coordinate in
one second, and extract the mean and standard deviation of the pace as two fea-
tures. We find that the paces of most avatars are generally small, although they
can be large occasionally. To characterize the variability of paces when players
move fast, we also define the “large pace SD,” which is the standard deviation of
paces larger than 10 units.

In addition to normal movements, players may teleport their avatars to a
remote place instantly through a teleportation spot. Teleportation may also be
used when an avatar dies. It will be transferred to the rebirth spot so that its life
points can be recharged. We detect teleportation occurrences by computing if the
offset in one second is longer than 60 units and define the feature “teleportation
rate” as the average count of teleportation occurrences recorded in one second.

Fig. 3 shows the distribution of the four features related to the movement
pace and teleportation. Although the means of the paces of different player
types are dissimilar, the variations are not large. This shows that the four player
types have different but consistent micro-movement behavior in small time scales.
The standard deviation of the pace also has large discriminability, where that
of human players and Eraser Bot have similar magnitude. The large standard



Human CR Eraser ICE

5
10

15
20

25
30

Pace Mean

Human CR Eraser ICE

2
4

6
8

10
12

Pace SD

Human CR Eraser ICE

2
4

6
8

10

Pace (>10) SD

Human CR Eraser ICE

0.
00

0.
04

0.
08

Teleportation

Fig. 3. The distribution of features related to movement pace.

deviation of the pace, on the other hand, exhibits great discriminability, which
indicates that human players have even larger pace variability when they move
fast. Finally, CR Bot and Eraser Bot have very low teleportation frequency. In
contrast, human players have moderate teleportation frequency. Moreover, their
variance is high because human players have different preferences when using
teleportation spots and players get killed at different rates.

3. Path We also define the following features to characterize the detailed tra-
jectories of avatars in a game.

Lingering. We consider whether players “lingered” in a small area during a
specific time period. For an avatar at (x, y) at time t, if its distance from (x, y)
was always less than d during the period (t, t + p), we say that the avatar was
lingering during (t, t + p), given the parameters (d, p). We arbitrarily set d = 30
seconds and p = 300 units, as we find that different parameters do not affect the
classification performance significantly.

Smoothness. The “smoothness” feature determines whether an avatar moves
in straight or zig-zag patterns. Assume an avatar is at (x1, y1) at time t1 and at
(x2, y2) at time t2. We define the smoothness as the number of times the charac-
ter moves across the line (x1, y1)− (x2, y2) during the period (t1, t2). As the line
(x1, y1) − (x2, y2) indicates the shortest route between the two points (x1, y1)
and (x2, y2), crossing the line implies that the player is moving inefficiently. This
may be because he is attempting to dodge gunfire, switch to another target, or
simply due to players’ habits or bots’ routing algorithms.



Human CR Eraser ICE

0.
01

0.
03

0.
05

Linger Frequency

Human CR Eraser ICE

15
20

25
30

35

Linger Length

Human CR Eraser ICE

0.
80

0.
90

1.
00

Smoothness

Human CR Eraser ICE

5
10

15

Detourness

Fig. 4. The distribution of features related to movement path.

Detour. We define another feature “detour” to quantify the effectiveness of
user movements. If an avatar is at (x1, y1) at time t1 and at (x2, y2) at time t2,
we compute the detour by dividing the length of the movement by the effective
offset of an avatar during the period (t1, t2).

The distributions of the above features are plotted in Fig. 4. The graph
shows that the linger frequency and duration of human players are significantly
less than those of game bots. This is reasonable because lingering in a place for a
long time is a dangerous, as the player may be noticed and induce opponents’ fire.
The smoothness of human players is the lowest of the four player types, which
supports the intuition that human players’ movements are the most irregular and
unpredictable. The detour feature shows that Eraser Bot moves very inefficiently
in terms of the avatar’s effective offset. In contrast, the movements of human
players are relatively more efficient. We suspect this is because human players
tend to move away from current positions to another place efficiently even though
they may move irregularly and strategically; thus, the resulting avatar trajectory
exhibits both unpredictability and efficiency which seem contradictory.

4. Turn Our final set of features is based on the frequency and amplitude of how
avatars change direction. Our rationale is that each time an avatar changes di-
rection, the magnitude of the change should be dependent on player conventions
and bot routing algorithms.

Assume an avatar is at (x1, y1) at time t, at (x2, y2) at time t + p, and at
(x3, y3) at time t + 2p. If the angle between two vectors (x2 − x1, y2 − y1) and
(x3 − x1, y3 − y1) is greater than a, we determine that a turn with angle a



Human CR Eraser ICE

0.
0

0.
2

0.
4

0.
6

Turn 30

Human CR Eraser ICE

0.
0

0.
2

0.
4

0.
6

Turn 60

Human CR Eraser ICE

0.
0

0.
2

0.
4

Turn 90

Human CR Eraser ICE

60
70

80
90

11
0

Turn Angle

Fig. 5. The distribution of features related to turn movement.

occurred. We define three features to denote the frequency of turns with angles
30◦, 60◦, and 90◦, respectively. In addition, we define a feature called the “turn
angle” to denote the average angle change for all direction changes greater than
30◦.

Fig. 5 shows the distributions of the turn-related features. We observe that
the four player types change direction at different rates no matter how we define
the minimum degree of a direction change. Notably, the turn frequency of human
players is the highest for the 30◦ angle and becomes relatively lower for the 90◦

angle. In addition, the average turn angle of human players is the lowest among
the four types, which indicates that human players tend to adjust their directions
continuously and slightly.

5.2 Classification

We apply a supervised classification framework to train a classifier, which we use
to determine whether a segment of an avatar’s trajectory belongs to a human
player or a game bot. The classifier we adopt is the naive Bayesian classifier
without the kernel density estimation. We evaluate the performance of trajectory
classification in the next section.

6 Performance Evaluation

In this section, we evaluate the performance of our proposed bot detection
scheme on the collected traces. First, we evaluate whether our scheme can distin-



200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Observation time (sec)

A
cc

ur
ac

y

100 200 300 400 500 600 700 800 900 1000

ON/OFF features
Pace features
Path features
Turn features
All features

Fig. 6. Classification accuracy between human and bots.

guish between human players and game bots, by using the classifier to perform
10-fold cross-validation. In real-life scenarios, the trace length plays an impor-
tant role because it determines how quickly a game bot can be detected. Thus,
we evaluated the performance of our scheme on different traces lengths, as shown
in Fig. 6. The graph shows that the detection accuracy is higher than 90%, even
when the trace length is as short as 100 seconds. Longer traces yield better
accuracy. To determine which category of features yields the highest accuracy,
we plot the classification performance for each category of features. The results
indicate that the features related to the movement pace, direction changes, and
ON/OFF periods all yield good results, while path-related features only exhibit
good discriminability when the trace length is 800 seconds or longer.

Furthermore, we perform a player-type classification; that is, we not only
determine whether a character is controlled by a human player or a bot program,
but also identify the bot program used if appropriate. The results are shown in
Fig. 7. The classification accuracy of the player types is even better than that
of the human-bot scenario when the trace length is longer than 200 seconds.
With a trace length of 500 seconds or longer, our scheme yields a classification
accuracy of 98% or higher. However, in this setting, individual feature categories,
except those related to movement paces, exhibit low discriminability when they
are applied to the classification separately.

7 Conclusion

We have proposed a trajectory-based approach for detecting game bots. It is a
general technique that can be applied to any game in which the avatar’s move-
ment is controlled by the players directly. Our analysis of real-life traces shows
that the trajectories of human players and game bots are very dissimilar. The
performance evaluation results show that our bot detection scheme can achieve



200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Observation time (sec)

A
cc

ur
ac

y

100 200 300 400 500 600 700 800 900 1000

ON/OFF features
Pace features
Path features
Turn features
All features

Fig. 7. Classification accuracy between four types of players (human and three bot
programs).

a detection accuracy of 95% or higher when the trace length is 200 seconds or
longer. Because it is difficult to simulate human players’ behavior when control-
ling game characters, we believe our method has the potential to distinguish
between human players and automated programs, and thus merits further inves-
tigation.

References

1. Golle, P., Ducheneaut, N.: Preventing bots from playing online games. Computers
in Entertainment 3(3) (2005) 3–3

2. von Ahn, L., Blum, M., Hopper, N.J., Langford, J.: CAPTCHA: Using hard AI
problems for security. In: Proceedings of Eurocrypt. (2003) 294–311

3. Novak, T.P., Hoffman, D.L., Duhachek, A.: The influence of goal-directed and
experiential activities on online flow experiences. Journal of Consumer Psychology
13(1) (2003) 3–16

4. Ila, S., Mizerski, D., Lam, D.: Comparing the effect of habit in the online game
play of australian and indonesian gamers. In: Proceedings of the Australia and
New Zealand Marketing Association Conference. (2003)

5. Chen, K.T., Jiang, J.W., Huang, P., Chu, H.H., Lei, C.L., Chen, W.C.: Identifying
MMORPG bots: A traffic analysis approach. In: Proceedings of ACM SIGCHI
ACE’06, Los Angeles, USA (Jun 2006)

6. Chen, K.T., Huang, P., Lei, C.L.: Game traffic analysis: An MMORPG perspective.
Computer Networks 50(16) (2006) 3002–3023

7. Yeung, S., Lui, J., Liu, J., Yan, J.: Detecting cheaters for multiplayer games:
theory, design and implementation. Proc IEEE CCNC 6 1178–1182

8. Malakhov, M.: CR Bot 1.15 (May 2000) http://arton.cunst.net/quake/crbot/.
9. Feltrin, R.R.: Eraser Bot 1.01 (May 2000)

http://downloads.gamezone.com/demos/d9862.htm.
10. jibe: ICE Bot 1.0 (1998) http://ice.planetquake.gamespy.com/.


