
Game Bot Identification Based on Manifold Learning∗

Kuan-Ta Chen1, Hsing-Kuo Kenneth Pao2, and Hong-Chung Chang2

1Institute of Information Science, Academia Sinica
2Dept. of Computer Science & Information Engineering, National Taiwan Univ. of Science & Technology

ktchen@iis.sinica.edu.tw, {pao,m9515069}@mail.ntust.edu.tw

ABSTRACT
In recent years, online gaming has become one of the most
popular Internet activities, but cheating activity, such as the
use of game bots, has increased as a consequence. Gener-
ally, the gaming community disapproves of the use of game
bots, as bot users obtain unreasonable rewards without cor-
responding efforts. However, bots are hard to detect because
they are designed to simulate human game playing behavior
and they follow game rules exactly. Existing detection ap-
proaches either disrupt players’ gaming experiences, or they
assume game bots are run as standalone clients or assigned
a specific goal, such as aim bots in FPS games.

In this paper, we propose a manifold learning approach
for detecting game bots. It is a general technique that can
be applied to any game in which avatars’ movement is con-
trolled by the players directly. Through real-life data traces,
we show that the trajectories of human players and those
of game bots are very different. In addition, although game
bots may endeavor to simulate players’ decisions, certain hu-
man behavior patterns are difficult to mimic because they
are AI-hard. Taking Quake 2 as a case study, we evaluate
our scheme’s performance based on real-life traces. The re-
sults show that the scheme can achieve a detection accuracy
of 98% or higher on a trace of 700 seconds.

Keywords
Cheating, Classification, Isomap, kNN, Online Games, SVM,
Trajectory

1. INTRODUCTION
∗This work was supported in part by Taiwan Information
Security Center (TWISC), National Science Council under
the grants NSC 97-2219-E-001-001 and NSC 97-2219-E-011-
006. It was also supported in part by Taiwan E-Learning
& Digital Archives Program (TELDAP), National Science
Council under the grants NSC 96-3113-H-001-010 and NSC
96-3113-H-001-012.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NetGames’08, Worcester, MA, USA
Copyright 2008 ACM 978-1-60558-132-3-10/21/2008 ...$5.00.

In recent years, online gaming has become one of the most
popular Internet activities. However, as the population of
online gamers has increased, game cheating problems, such
as the use of game bots, have become more serious. Game
bots are automated programs with or without artificial in-
telligence that help players enhance, accelerate, or bypass
some routines in the game. For example, in MMORPGs
(Massively Multiplayer Online Role Player Games), players
can save a great deal of time by using bots to perform repet-
itive tasks, such as slashing low-level monsters, or fishing in
a river to master the avatar’s fishing skills. Meanwhile, in
FPS (First-Person Shooter) games, users can employ bots
to play in place of themselves in order to get high scores and
gain a reputation in the community.

Generally, the gaming community disapproves of the use
of game bots, as bot users obtain unreasonable rewards with-
out corresponding efforts. However, game bots are hard to
detect because they are designed to simulate human game
playing behavior and they follow game rules exactly. Some
bot detection studies [8,27] propose using CAPTCHA tests
during a game to determine whether an avatar is actually
controlled by a person. Although this method is effective,
it disrupts the game play and degrades players’ feelings of
immersion in the virtual world [10, 16]. Alternatively, pas-
sive detection approaches, such as schemes based on traffic
analysis [4] and schemes based on avatars’ shooting accu-
racy in FPS games [28], have been proposed. However, the
former approach assumes that a game bot works as a stan-
dalone client, while the latter is only suitable for detecting
aim bots in shooting games.

In this paper, we propose a general approach for all gen-
res of games in which players control the avatar’s move-
ments directly. Taking the avatar’s movement trajectory as
the input, we adopt a learning method for bot detection.
The rationale is that the trajectory of an avatar controlled
by a human player is hard to simulate. Players control the
movement of avatars based on their knowledge, experience,
intuition, and a great deal of environmental information pro-
vided in the game. Since human decisions are sophisticated
and depend on multitudinous observable and unobservable
factors, how to model and simulate realistic movements is
still an open question in the AI field.

To exploit the complexity of an avatar’s trajectory for bot
detection, it is necessary to tackle the high dimensionality
of the derived information because the trajectory contains
a long series of two-dimensional or three-dimensional co-
ordinates (depending on whether the game is 2D or 3D)
over time. To analyze such inputs, we adopt a manifold

learning framework that transforms the dataset in the high-
dimensional space into a dataset in a low-dimensional space,
so that the data representation in the latter space can be uti-
lized for bot detection. The objective is to solve the so-called
curse of dimensionality that usually occurs in a dataset of
high dimensionality. We adopt Quake 2 as our case study
because it is a classic and popular FPS game, and many real-
life human traces are available on the Internet. Therefore,
we can use such traces to validate our proposed scheme.

The contribution of this paper is two-fold. 1) We propose
using a manifold learning framework to detect game bots
based on avatars’ trajectories. It is a general model that
can be applied to any game in which avatars’ movement
is controlled by the players directly. 2) Based on real-life
human traces, the performance evaluation results show that
the scheme can achieve a detection accuracy of 98% or higher
on a trace of 700 seconds. Because it is difficult to simulate
human players’ logic and determine how they control game
characters, we believe this approach has the potential to dis-
tinguish between human players and automated programs
and thus merits further investigation.

The remainder of this paper is organized as follows. Sec-
tion 2 contains a review of related work. In Section 3, we
introduce our game case study, Quake 2, and describe the
game trace collection methodology. In Section 4, we con-
sider the distribution of discriminative features and propose
identification schemes based on a manifold learning frame-
work. Section 5 contains an evaluation of our approach’s
performance. We also analyze the results for traces of dif-
ferent length. Then, in Section 6, we summarize our conclu-
sions.

2. RELATED WORK
In recent years, a number of studies have employed ma-

chine learning techniques to detect or simulate game bots in
online games. For example, Yeung et al [29] proposed using
the a dynamic Bayesian network (DBN) to model the aiming
accuracy for aimbot detection in first-person shooter games.
In the DBN, the aiming accuracy depends on whether the
player is cheating, whether the player or the target is mov-
ing, the aiming direction, and the distance between the
player and the target. Since the possibility that a player
is cheating is a random variable, the authors modeled it
by a Markov chain. The model can detect cheaters with a
high degree of accuracy, but it can only be applied to aim-
bots. Kim et al [13] proposed detecting auto programs in
MMORPGs [13] based on the window events, which are gen-
erated by a player’s key strokes, mouse button clicks, and
mouse movements. The events are collected during game
play and used to compute statistics like the mean and stan-
dard deviation of the counts of certain events at regular
intervals. Then, various classification schemes, such as the
decision tree, the k -NN classifier, the multilayer perceptron
network, and the näıve Bayesian classifier, are used to de-
termine whether automated programs are being used. Be-
cause of the high regularity exhibited by such programs, the
window-event-based approach yields a decent performance
irrespective of the classification method used.

Thurau et al [23] attempted to create human-like game
agents with machine learning approaches. They classified
the behavior of human players into two categories: percep-
tions and reactions. The former includes a player’s environ-
mental information like the avatar’s position and the dis-

Figure 1: A screen shot of Quake 2.

tance between the avatar and nearby opponents; the lat-
ter includes a player’s actions, such as the avatar’s move-
ment velocity and direction. With the information from
both categories the authors created automatic human-like
game agents. A number of learning approaches have been
exploited in a series of papers by the same research group,
including self-organizing maps [24], manifold learning [22],
Bayesian networks [25], and waypoint maps [21,23]. Equipped
with these learning techniques, the proposed game agents
proposed can imitate human behavior very well compared
to traditional rule-based game agents. However, the man-
ifold learning approach in [22] only performs a 3-D to 2-D
mapping, which is not really a case of the curse of dimen-
sionality. Instead, in this work, based on avatars’ movement
trajectories, we apply a manifold learning framework with
more than 200 original dimensions to detect the use of game
bots.

3. DATA DESCRIPTION
In this section, we describe our case study game, Quake

2, and the procedures we used to collect the game traces.

3.1 Quake 2
Quake 2 is a famous FPS (First-Person Shooter) game

that was developed by id Software [2]. As with FPS games
generally, a player adopts the role of a particular charac-
ter and shoots his enemies via the user interface shown in
Fig. 1. Multiple players can participate in a game simul-
taneously, and they can cooperate to complete a mission.
However, death-match games, in which each player tries to
kill as many other participants as possible, are much more
popular. Quake 2 was nominated as “The Best Game Ever”
by PC Gamer in 1998, and went on to sell over one million
copies [1]. One reason for the game’s popularity is that it
is easy to customize, and a large number of maps, player
models, textures, and sound effects are available on the In-
ternet. The game has been ported to many platforms other
than PCs, for example, Nintendo 64, Playstation, Amiga
PowerPC, and Xbox 360.

3.2 Human Traces
Quake 2 supports a game-play recording function that

keeps track of every action and movement, as well as the
status of each character and item, throughout the game.
With a recorded trace, one can reconstruct a game and re-

view it from any position and angle desired with VCR-like
operations. Players often use this function to assess their
performance and combat strategies. Moreover, experienced
players are encouraged to publish their game-play traces as
teaching materials for novice gamers and thereby build a
reputation in the community.

To ensure that our game traces represented the diversity
of Quake players, we only used traces that players had con-
tributed voluntarily. The traces were downloaded from the
following archive sites: GotFrag Quake1, Planet Quake2,
Demo Squad3, and Revilla Quake Site4. We restricted the
traces to the map The Edge, one of the most well-known
levels in death-match play. At this level, each player’s only
goal is to kill as many other players as possible, until the
time limit is reached. Because short traces contain little in-
formation, we only collected traces longer than 600 seconds.

3.3 Bot Traces
There are many game bots available for Quake 2. For this

study, we selected three of the most popular bot programs
for trace collection, namely CR BOT 1.14 [15], Eraser Bot
1.01 [7], and ICE Bot 1.0 [12].

To collect the game bot traces, we set up experiments on
our own Quake server and ran a number of game bots to
fight each other. The experimental setup was as follows:

1. In each game, 2–6 bots were selected at random to
fight each other. Each session spanned 20 hours.

2. The game trace was recorded at the server using the
serverrecord command.

3. The game’s catch-the-flag mode was turned off, so the
game bots kept fighting each other until the server shut
down. The cheating mode was also disabled.

4. The AI levels of CR Bot and Eraser Bot were randomly
set from 0 to 9 and 0 to 3 respectively.

We collected 1, 306 hours of raw traces in total. Then,
from each trace, we took the first 1, 000 seconds, the middle
1, 000 seconds and another 1, 000 seconds near the end to
compile our dataset. In total, we collected 143.8 hours of
trace data, as shown5 in Table 1. In CR Bot and Eraser
Bot, all human players and bots were active most of time
(≥ 89%). There was less activity in ICE Bot because it often
remained idle in some places waiting for an opportunity to
ambush other players.

4. BOT IDENTIFICATION SCHEMES
We propose using two approaches for bot detection, namely,

the kNN algorithm and the support vector machine (SVM)
model [11, 26]. To improve the detection accuracy, the ap-
proaches can be combined with a dimension reduction (DR)

1http://www.gotfrag.com/quake/home/
2http://planetquake.gamespy.com/
3http://q2scene.net/ds/
4http://www.revilla.nildram.co.uk/demos-full.htm
5We assume that the sections at the beginning, in the mid-
dle and near the end of a trace dissimilar and can thus be
considered as different samples. In this way, we can cre-
ate more useful data for the input of our learning scheme,
though this preprocessing is not essential for our scheme to
work properly.

Table 1: Trace Summary
Name No Length Total Active

1 Human 282 1000 seconds 78.0 hours 89%
2 CR 75 1000 seconds 20.8 hours 89%
3 Eraser 102 1000 seconds 28.3 hours 92%
4 ICE 60 1000 seconds 16.7 hours 67%

technique called Isometric Feature Mapping or Isomap [20],
a method that belongs to the category of manifold learning.
Considering the machine learning framework for our prob-
lem, some labeled data is collected for model training. We
treat bot traces as positive samples and the traces from hu-
man players as negative samples; thus, a binary classification
problem is formed. Specifically, we compile a dataset of M
samples {(xm, ym), m = 1, . . . , M} = {(xm1, . . . , xmN ; ym)}
for the training process. Each data item is described by N
attributes and ym ∈ {0, 1} is the class information.

Notations. A trace s is a series of locations in either a 2-
D or 3-D space, i.e., s = (s1, s2, . . . , st, . . . , sT) up to time
T . Usually, T represents the effectiveness of the detection
technique, or how quickly an alarm should be raised about
a bot user. A step in a trace is the vector st+1 − st, and,
the Euclidean step size is denoted by ‖st+1 − st‖. We then
consider the distribution of the step sizes, i.e., the frequency
counts of the step sizes after discretization. The counts are
collected in B bins as (f1, f2, . . . , fB), based on the frequen-
cies of the step sizes from 0 to a large number. We assume
that frequency counts of step size 0 indicate periods of con-
versation, rest periods, hiding from intense fire, or waiting
for the arrival of opponents. The frequencies then become
the input vector for our machine learning framework. Next,
we consider several classifiers that can be used for bot de-
tection.

4.1 k Nearest Neighbors
The kNN algorithm is one of the oldest and most intuitive

classification methods, and many applications continue to
demonstrate its competitive performance compared to other
classifiers (e.g. [19]). In kNN, the class label of a new trace
is decided by the class labels of the traces surrounding it.
One of the keys to the successful application of kNN is the
choice of an appropriate metric. In our study, for two data
points, i.e., two feature vectors, P and Q, we choose either
the Euclidean distance or the Kullback-Leibler divergence [5]

dkl(P, Q) =
∑

x

P (x) log
P (x)

Q(x)
,

as the metric. In general, the KL divergence is not symmet-
ric; thus, we would like to choose a symmetric version.

Dkl(P, Q) = dkl(P, Q) + dkl(Q, P) .

We can also use the Euclidean metric as

De(P, Q)2 =
∑

x

(P (x) − Q(x))2 ,

the distance measure between two data points.

4.2 Support Vector Machines

Support Vector Machines (SVMs) are well suited for solv-
ing binary classification problems like bot detection. Theo-
retically, in a linear case, by selecting the separating hyper-
plane wT x + b = 0 that maximizes the margin between
positive and negative samples, we can obtain a classifier
that minimizes the generalization error [11,26]. Specifically,
finding the optimal classifier is equivalent to minimizing a
functional comprised of the training error term and the reg-
ularization term as follows:

min
(w,b,ξ)∈RN+1+M

C
∑M

m=1 ξm + 1
2
‖w‖2

2

s.t. ym(wT xm + b) + ξm ≥ 1
ξm ≥ 0, for m = 1, 2, . . . , M,

where ξm denotes the positive slack variables, and C is a
positive parameter that controls the balance between the
training error and the margin maximization term. In a non-
linear case, the kernel trick [18] can help us find a nonlinear
separating surface between positive and negative samples.
Several variants of the typical SVM model have been pro-
posed; e.g., the smooth SVM (SSVM), which tries to solve
an unconstrained minimization problem instead [14]. In this
study, we use SSVM to evaluate our framework. We consider
both the linear and the nonlinear versions.

4.3 Dimension Reduction using Isomap
Using kNN or SVM (SSVM) solely can give us the clas-

sification output, but the performance may be poor. This
may be due to the curse of dimensionality (e.g., [3]) which
degrades the generalization power, or to the heavy compu-
tation required in the training or prediction process. To
resolve this problem, we use a feature extraction technique
called Isomap to reduce the dimensionality of the original
space to a space with lower dimensionality, where the rela-
tionships between data points can be identified easily. Isomap,
which is a type of manifold learning method [17,20], assumes
that the data is lying on a smooth manifold so that each lo-
cal area can be approximated by a Euclidean space without
much loss of information.

The goal of Isomap is to find a mapping from the original
space to an intrinsic space in which, locally, it tries to main-
tain the neighborhood relationship between each pair of data
points; however, globally, a geodesic distance between two
points is substituted to describe their dissimilarity. Given
the training data in the input space, the Isomap process can
be divided into three steps:

1. Construct a relation graph by linking each pair of points
that qualify as neighbors. The input is the pairwise
Euclidean distances between data points and the out-
put is the relation graph.

2. Use any shortest path algorithm to find the pairwise
shortest path on the graph and record the length of
that path as the pairwise distance (if the pair of points
are not neighbors). The input is the graph from the
previous step and the output is a pairwise M × M
distance matrix D.

3. Take the distance matrix D as the input to apply Mul-
tidimensional Scaling (or MDS) [6] to find the global
coordinates of all the data points in a new space. In
this step, the dimensionality is reduced by choosing a
small number, d, the dimensionality of the new space.

−3 −2 −1 0 1 2 3 4 5
−3

−2

−1

0

1

2

3
Human
Crbot
Erbot
Icebot

Figure 2: Data representation after dimension re-
duction by Isomap, where a point represents a trace
of a human user (green circle) or from a bot (oth-
ers). The x- and y-axes are the first and second
principal coordinates [6] from Isomap. As the figure
shows, the human data and the bot data are well
separated. Classification in this space using kNN
or SVM (or SSVM) can be performed with a high
degree of accuracy.

We use an M × d matrix A to record the coordinates
in the new space, where the row vector Am contains
the new coordinates of the m-th point.

To summarize the process, Isomap arranges the data points/traces
in a low dimensional space so that the dissimilarities between
the points can be determined by their Euclidean distances,
as shown in Fig. 2. In other words, we can measure the dis-
similarity between two points by their Euclidean distance in
the low dimensional space; however, we may need to mea-
sure the much harder geodesic distance between them in the
high dimensional space. In Isomap, the geodesic path (or
the shortest path in a discrete case) is used to link each pair
of data points. The length of the geodesic path between
each pair of points is then calculated and used to describe
the relationship between the points. In the last step, MDS
is used to find the embedding so that the pairwise relations
can be visualized.

Fig. 2 shows the results derived by applying Isomap6.
The (green) circles indicate the traces of human users, while
the others are obtained from several different bots. Among
them, CR Bot (the cross symbols) has the highest variance,
and the human players have the second highest variance.
Meanwhile, the remaining traces, including Eraser Bot and
ICE Bot, exhibit relatively low variance. Most importantly,
data items with the same labels are clustered together, or in
a few groups (as in CR Bot). However, such discriminative
results can not be obtained if we use the well-known Prin-
cipal Component Analysis (PCA) [9] method to perform the
DR, as shown by the results in Fig. 3. After Isomap finds
a low dimensional representation of the data, we can use
any classification scheme, e.g., such as the kNN algorithm,
to decide the label (either a bot or a human player) for a
new trace. In the next section, we evaluate the detection
performance of our approach and present the detailed clas-

6We only present data in 2-D for visualization purposes. In
general, the detection or classification task is executed in
the space of intrinsic dimensionality.

−800 −700 −600 −500 −400 −300 −200 −100 0 100 200
−400

−200

0

200

400

600

800

Human
Crbot
Erbot
Icebot

Figure 3: Dimension reduction by PCA, where the
x- and y-axes represent the first and second princi-
pal components respectively. The points of human
users and bots overlap, so they are not as distin-
guishable from each other as the result obtained by
Isomap.

sification scheme.

5. PERFORMANCE EVALUATION
We consider four classification schemes for bot detection:

(1) kNN with KL divergence as the metric, which is ap-
plied in the original space; (2) SSVM7, which is also applied
in the original space; (3) kNN, which is applied in the low
dimensional space derived using Isomap and (4) Isomap fol-
lowed by SSVM. Note that kNN is a näıve classification
method, whereas SSVM is a sophisticated method. Our re-
sults demonstrate that, in terms of performance, kNN com-
bined with DR (Isomap) is comparable to the other meth-
ods, while not to mention that kNN, compared to SVM (or
SSVM) is a very efficient approach in terms of time com-
plexity. To evaluate the performance, we use the detection
error rate, which is measured by a ten-fold cross-validation
procedure. In other words, the whole dataset is partitioned
into ten subsets of more or less equal size, with stratifi-
cation8. Then, nine of the subsets are used for training
while the tenth is reserved for testing. The whole pro-
cedure is repeated ten times using different partitions for
cross-validation to obtain an average result.

To compile the training data, we transform each trace into
a distribution of step sizes, as mentioned in Section 4. The
distribution is discretized and partitioned into B = 201 bins
for each trace, with the corresponding probability function
values or frequency counts; therefore, a data item is in a
201-dimensional space. Based on the dataset described in
Table 1, there are 519 data items, of which 282 are positive
samples (human) and 237 are negative samples (bots). To
apply the Isomap procedure, the neighboring graph is de-
fined by considering the five closest neighbors of each sam-
ple. Then, after the DR to a low dimensional space (of
dimensionality 5), we either use an SSVM for classification,
or we simply use kNN in the new space for classification with
k2 = 13. In the original space, the number of data items to

7As mentioned previously, we adopt SSVM instead of SVM
because it achieves a better performance.
8That is, the set is divided into several groups that contain
similar percentages of positive and negative samples.

Table 2: The results of 10-fold cross-validation,
which is repeated 10 times using six different classi-
fication methods. The results show the average false
positive rates, false negative rates and error rates.

Classification Methods FP(%) / FN(%)Err(%)

(A1) kNN 0.00 / 3.22 (1.45%)
(A2) Linear SSVM 1.07 / 0.95 (1.02%)
(A3) Nonlinear SSVM 1.43 / 0.35 (0.94%)
(B1) DR + kNN 0.00 / 1.87 (0.84%)
(B2) DR + Linear SSVM 0.88 / 16.68 (8.00%)
(B3) DR + Nonlinear SSVM 0.00 / 0.00 (0.00%)

be considered as neighbors should be limited (k1 = 5) due
to the possible curse of dimensionality; however, this can be
relaxed to a larger number (k2 = 13) in a dimension reduced
space. We discuss the performance of each approach below.

5.1 Error Rates
We use the previously mentioned trace as input for the

classification. Table 2 shows the performance of several clas-
sifiers. Both kNN and SSVM are applied with and without
DR; and we use both the linear and nonlinear versions of
SSVM. Most of the classification methods yield error rates9

of less than 2%, while DR by Isomap and nonlinear SSVM
achieve perfect classification results. Overall, the methods
that employ Isomap for DR yield better results than the
methods that do not use it. Moreover, the methods based
on SSVM outperform those based on kNN.

5.2 Using Trajectories of Different Length
Since we want to detect bot users as early as possible, we

can analyze the performance when only a partial input trace
up to a certain time is given, rather than a whole sequence.
As shown in Fig. 4, one method may be superior to another
for inputs of different length, but the results are similar to
those reported in the previous section:

1. The methods that use DR (Isomap) outperform those
that do not use it.

2. The methods based on SSVM perform better than
those based on kNN, except those with false positive
rates. In the latter case, although kNN-based methods
often outperform those based on SSVM, the differences
are marginal.

6. CONCLUSION
We have proposed a trajectory-based approach for detect-

ing game bots. Specifically, we employ Isomap for dimen-
sion reduction, and then use kNN or SSVM to perform su-
pervised classification. The performance evaluation results
demonstrate that, based on real-life Quake 2 traces, our ap-
proach can achieve a detection accuracy of 98% or higher
on a trace of 700 seconds. Because it is difficult to simulate
human players’ behavior when controlling game characters,

9DR combined with linear SSVM is not effective because
the decision boundary tends to be nonlinear in a low di-
mensional space. For ease of visualization, we removed the
result of Isomap combined with linear SSVM because it is
not comparable to the results of the other methods.

100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

Observation time (sec.)

E
rr

o
r

R
at

e
(%

)

kNN
LinearSVM
NonlinearSVM
DimRed+kNN
DimRed+NonlinearSVM

100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

Observation time (sec.)

E
rr

o
r

R
at

e
(%

)

kNN
LinearSVM
NonlinearSVM
DimRed+kNN
DimRed+NonlinearSVM

100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

Observation time (sec.)

E
rr

o
r

R
at

e
(%

)

kNN
LinearSVM
NonlinearSVM
DimRed+kNN
DimRed+NonlinearSVM

(a) (b) (c)

Figure 4: The error rates with different trajectory observation times, measured in seconds: (a) error rate,
(b) false positive rates, and (c) false negative rates. The results are similar to those given in the previous
section: 1) the methods combined with Isomap outperforms those without it; and 2) the methods based on
SSVM outperform those based on kNN, except those with false positive rates.

we believe that our method has the potential to distinguish
between human players and automated programs, and thus
merits further investigation.

7. REFERENCES
[1] Id Software: id History.

http://www.idsoftware.com/business/history/.
[2] id Software, Inc. http://www.idsoftware.com/.
[3] C. M. Bishop. Pattern Recognition and Machine Learning.

Springer, 2006.
[4] K.-T. Chen, J.-W. Jiang, P. Huang, H.-H. Chu, C.-L. Lei,

and W.-C. Chen. Identifying MMORPG bots: A traffic
analysis approach. In Proceedings of ACM SIGCHI
ACE’06, Los Angeles, USA, Jun 2006.

[5] T. M. Cover and J. A. Thomas. Elements of Information
Theory (2nd Ed.). Wiley-Interscience, July 2006.

[6] T. F. Cox and M. A. A. Cox. Multidimensional Scaling,
Second Edition. Chapman & Hall/CRC, 2000.

[7] R. R. Feltrin. Eraser Bot 1.01, May 2000.
http://downloads.gamezone.com/demos/d9862.htm.

[8] P. Golle and N. Ducheneaut. Preventing bots from playing
online games. Computers in Entertainment, 3(3):3–3, 2005.

[9] H. Hotelling. Analysis of a complex of statistical variables
into principal components. J. of Educational Psychology,
24:417–441, 1933.

[10] S. Ila, D. Mizerski, and D. Lam. Comparing the effect of
habit in the online game play of australian and indonesian
gamers. In Proceedings of the Australia and New Zealand
Marketing Association Conference, 2003.

[11] C. J. C. Burges. A tutorial on support vector machines for
pattern recognition. Data Mining and Knowledge
Discovery, 2(2):121–167, 1998.

[12] jibe. ICE Bot 1.0, 1998.
http://ice.planetquake.gamespy.com/.

[13] H. Kim, S. Hong, and J. Kim. Detection of auto programs
for MMORPGs. In Proceedings of AI 2005: Advances in
Artificial Intelligence, pages 1281–1284, 2005.

[14] Y.-J. Lee and O. L. Mangasarian. Ssvm: A smooth support
vector machine for classification. Comput. Optim. Appl.,
20(1):5–22, 2001.

[15] M. Malakhov. CR Bot 1.15, May 2000.
http://arton.cunst.net/quake/crbot/.

[16] T. P. Novak, D. L. Hoffman, and A. Duhachek. The
influence of goal-directed and experiential activities on
online flow experiences. Journal of Consumer Psychology,
13(1):3–16, 2003.

[17] S. T. Roweis and L. K. Saul. Nonlinear dimensionality
reduction by locally linear embedding. Science,
290(5500):2323–2326, 2000.

[18] B. Schölkopf and A. Smola. Learning with Kernels Support
Vector Machines, Regularization, Optimization and
Beyond. MIT Press, Cambridge, MA, USA, 2002.

[19] G. Shakhnarovich, T. Darrell, and P. Indyk.
Nearest-Neighbor Methods in Learning and Vision: Theory
and Practice. The MIT Press, 2006.

[20] J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global
geometric framework for nonlinear dimensionality
reduction. Science, 290(5500):2319–2323, December 2000.

[21] C. Thurau and C. Bauckhage. Tactical waypoint maps:
Towards imitating tactics in fps games. In M. Merabti,
N. Lee, and M. Overmars, editors, Proc. 3rd International
Game Design and Technology Workshop and Conference
(GDTW’05), pages 140–144, 2005.

[22] C. Thurau and C. Bauckhage. Towards manifold learning
for gamebot behavior modeling. In In Proc. Int. Conf. on
Advances in Computer Entertainment Technolog
(ACE’05), pages 446–449, 2005.

[23] C. Thurau, C. Bauckhage, and G. Sagerer. Learning
human-like movement behavior for computer games. In In
Proc. 8th Int. Conf. on the Simulation of Adaptive
Behavior (SAB’04), pages 315–323. IEEE Press, 2004.

[24] C. Thurau, C. Bauckhauge, and G. Sagerer. Combining self
organizing maps and multilayer perceptrons to learn
bot-behavior for a commercial game. In Proceedings of the
GAME-ON03 Conference, pages 119–123, 2003.

[25] C. Thurau, T. Paczian, and C. Bauckhage. Is bayesian
imitation learning the route to believable gamebots? In In
Proc. GAME-ON North America, pages 3–9, 2005.

[26] V. N. Vapnik. The Nature of Statistical Learning Theory.
Springer, November 1999.

[27] L. von Ahn, M. Blum, N. J. Hopper, and J. Langford.
CAPTCHA: Using hard AI problems for security. In
Proceedings of Eurocrypt, pages 294–311, 2003.

[28] S. Yeung, J. Lui, J. Liu, and J. Yan. Detecting cheaters for
multiplayer games: theory, design and implementation.
Proc IEEE CCNC, 6:1178–1182.

[29] S. F. Yeung, J. C. S. Lui, J. Liu, and J. Yan. Detecting
cheaters for multiplayer games: theory, design and
implementation. Consumer Communications and
Networking Conference, 2006. 3rd IEEE, 2:1178–1182,
2006.

