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Abstract—Understanding the impact of network conditions on
player satisfaction, which is one of the major concerns of network
game designers, is a popular research topic. Of the various ways
to gauge user satisfaction, in this paper, we focus on how network
quality affects a player’s decision to leave a game prematurely. To
answer this question, we analyze a 1, 356-million-packet trace
from a large commercial MMORPG called ShenZhou Online.

We show that both network delay and network loss signifi-
cantly affect a player’s decision to leave a game prematurely. It
is feasible to predict whether players will quit prematurely based
on the network conditions they experience. The proposed model
can determine the relative impact of different types of network
impairment. For our traces, the degrees of player intolerance of
network delay, delay jitter, client packet loss, and server packet
loss are in the proportion of 1:2:4:3 approximately. The model
can also be used to make system design decisions. Through
simulations, we show that by prioritizing server processing
according to the goodness of network conditions, employing
de-jitter buffers, or replacing TCP with a more lightweight
transport protocol, the probability of premature departure can
be significantly reduced. In this way, we demonstrate how our
model of players’ network experience provides feedback for the
design of online games.

Index Terms—Departure Analysis, Internet Measurement, Lo-
gistic Regression, MMORPG, Quality of Service, User Behavior

I. INTRODUCTION

Of the various research areas related to online games,
assessing the impact of network conditions on user experience
is one of the most popular topics. Many studies, e.g., [3, 4,
7, 8, 16, 18, 25, 27, 28, 33, 37, 39], try to answer questions
like: Are game players sensitive to network conditions? If the
answer is yes, they ask: What level of network QoS (Quality-of-
Service) should be provided to maintain a satisfactory gaming
experience? The answers to the above questions are important
because they could provide useful guidelines for the trade-offs
in network resource planning. For instance, if we can be sure
that players are less tolerant of large delay variations than high
latency, then providing a smoothing buffer at the client side,
which introduces additional latency but smoothes the pace of
game play, would be a plus, as it still improves the overall
gaming experience from the user’s perspective.

Currently, there is no standard way to objectively quantify
the satisfaction that players derive from gaming. Hence, the
effect of network quality is often evaluated in terms of the
users’ performance in a specific context, such as the number
of kills in shooting games, the time taken to complete each lap

in racing games, or the capital accumulated in strategy games.
However, game scores are highly dependent on a player’s
skills, the system design, and the game’s content, so the results
are not comparable and generalizable across different games.
On the other hand, according to flow theory in psychology,
game playing can be described as a pleasurable and exciting
activity that makes players oblivious to time while they are in
the game [21, 26]. The theory suggests that players will be
more conscious of the real world if the feeling of involvement
in the virtual world is diminished by network lags; therefore,
the effect of time distortion will be mitigated. Furthermore,
players may simply decide to quit a game as soon as they
detect unacceptable lags. Thus, we conjecture that the time
players leave a game is affected, to some extent, by the network
quality they experience.

Massively Multiplayer Online Role-Playing Games (MMO-
RPGs) have become immensely popular in recent years, with
several top games reporting millions of subscribers [36]. Our
conjecture is verified by real-life traces from a commercial
MMORPG, ShenZhou Online [35], for two reasons. First,
MMORPGs are deemed to be addictive in that about half of
the players consider themselves addicted [38], so they tend to
stay for a long time once they join a game. For instance, the
statistics of MMORPGs in Japan [1] show that the average
game session time is between 80 and 120 minutes. Most
players stay for more than an hour once they join a game.
If players leave in the first few minutes, it may indicate that
they have an unsatisfactory gaming experience due to poor
QoS. The second reason is that MMORPGs are relatively slow-
paced compared to other popular genres, such as first-person
shooting (FPS) games, which usually require players to make
sub-second decisions. Slow-action games undoubtedly have
less stringent service requirements than fast-action games.
Thus, MMORPGs could be seen as a baseline for real-time
interactive games so that if network QoS frustrates MMORPG
players, it should also affect gamers of other genres.

In this paper, we analyze the player departure patterns in
ShenZhou Online and their relationship to network quality.
We find that both network latency and network loss have a
significant influence on players’ decisions to leave a game
prematurely. We detail our major findings in the following
question-and-answer format.

1) Do game players leave a game prematurely due
to unfavorable network conditions? Yes. Generally
speaking, the worse the network quality, the earlier
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players will leave the game. For example, sessions with
a low packet loss rate (≤ 1%) have an average duration
of 160 minutes, while those with a high packet loss rate
(> 1%) have an average duration of 70 minutes. If we
only observe whether players quit in the first 10 minutes
of a game, only 3% of players who experience a low loss
rate leave in that time, compared to 20% of players who
experience a high loss rate.

2) Is it possible to predict whether a player will still
be online at a given instant? Yes. Using a logistic
regression approach [20], we show that it is possible
to predict premature departures based on the network
conditions the players experience. In our traces, the
network quality can explain 32% of the variability of
a player’s decision to leave a game after playing for 10
minutes, as shown by the following equation:

lp = 12.5 × rtt.mean + 86.1 × rtt.sd +
1.1 × log(closs) + 1.2 × log(sloss),

Pr[stay < 10min] = exp(lp)/(1 + exp(lp)),

where rtt.mean, rtt.sd, closs, and sloss stand for
average RTT (round-trip time), standard deviation of
RTT, client packet loss rate, and server packet loss rate,
respectively.

3) What is the relative influence of different kinds
of network impairment? Quantitatively, the degree of
player “intolerance” to network delay, delay jitter, client
packet loss, and server packet loss is in the proportion
of 1:2:4:3 approximately. In other words, if players
quit because they are frustrated by unfavorable network
conditions, on average, 10% of their dissatisfaction is
caused by network latency, 20% by network delay jitter,
40% by client packet loss, and 30% by server packet
loss. These findings also suggest that, while current
network games rely primarily on a “ping time” to select
a server for a smooth game, delay jitter should also be
considered in the server selection process.

4) Is it possible to encourage players to remain with
a game based on predictions about departure? Yes.
We first show that the player departure rate declines
over time; that is, the longer a player stays, the less
likely s/he is to leave the game any time. Moreover,
we find that the influence of network quality on players
declines over time. This may be because extraneous
factors, such as social bonds, affect a player’s decision
to leave when s/he has been in a game for a period
of time. Having considered both properties, we can
encourage users to remain with a game by temporarily
allocating more resources to players who tend to leave
prematurely until they settle down and become tied
to the game play. We show via simulations that, by
prioritizing server processing according to the goodness
of network conditions and employing de-jitter buffers,
the probability of premature departure can be reduced
by 10% and 4% respectively.

5) Can we provide a better gaming experience by
improving transport protocols? Many MMORPGs,

including the game we studied, use TCP as the un-
derlying transport protocol because of its reliable and
ordered transmission mechanism. However, TCP may
cause performance degradation, as stream-oriented de-
livery is not actually required for every game message.
With TCP, a single dropped packet causes a stall in
the transmission of subsequent network data until that
packet is successfully delivered. In our traces, the delay
jitters increased from an average of 18 ms to 32 ms
due to the TCP’s in-order delivery policy. Based on the
model developed in Section V, we estimate that the odds
of premature departure (defined as a player quitting a
game within 10 minutes of joining it) would be reduced
by a factor of 2.8 if the additional delay jitter due to
in-order delivery could be avoided. This corresponds to
a 12% reduction in the premature departure probability
(from 20% to 8%) in our case.

The remainder of this paper is organized as follows. Sec-
tion II describes related work. We briefly introduce the studied
game and summarize the collected traces in Section III. In
Section IV, we analyze the player departure patterns and their
correlations with network QoS. In Section V, we develop a
logistic model that describes the relationship between QoS
factors and premature departures. We discuss the model’s im-
plications and applications in Section VI. Then, in Section VII,
we present our conclusions.

II. RELATED WORK

Although a QoS infrastructure is not widely available on
the Internet, real-time interactive online games, which are
generally considered QoS-sensitive, are becoming increasingly
prevalent. The reason could be that either QoS is not important,
or players have simply become accustomed to unfavorable
network conditions. A number of experimental studies based
on users’ performance in controlled network environments
have addressed this question [4, 25, 28, 32, 33, 37, 39]. For
example, Beigbeder et alfound that typical ranges of packet
loss and latency do not significantly affect the outcome of
the game Unreal Tournament 2003 [4], while Sheldon et al.
concluded that, overall, high latency has a negligible effect
on the outcome of Warcraft III [33]. However, Nichols and
Claypool showed that user performance is degraded by almost
30% when latency is higher than 500 ms in NFL Football [25].

Meanwhile, some studies have explored the problem using
an observational approach [3, 8, 16]. Henderson found that
the effect of network delay is outweighed by game design or
exogenous effects, and players seem to be remarkably tolerant
of network conditions [16]. Armitage suggested that players
prefer a Quake 3 server with a ping time that is less than 150
to 180 ms from their locations [3]. In a previous work [8], we
proposed estimating players’ awareness of network quality by
the amount of time they spend in a game. We found that game
session times are closely related to the network conditions
players experience, and we derived the players’ intolerance
to various types of network impairment, e.g., latency, delay
jitter, and packet loss. The present study extends our work
in [8] by incorporating 1) the variability of players’ QoS-
sensitivity during a game, instead of treating it as constant; 2)
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Fig. 1. A screen shot of ShenZhou Online

predictability analysis of player departure events in terms of
network quality; and 3) the representativeness and sampling
methods of network QoS factors. We also explain how the
proposed regression model can be used in making system
design decisions.

While a number of previous works have suggested remark-
able QoS tolerance on the part of game players [4, 16, 33],
our findings based on the ShenZhou Online trace show that
network quality has a significant influence on players’ de-
parture patterns. We believe that the discrepancy is due to
both the nature of the game genre and the design and im-
plementation of each particular game, such as dead reckoning
schemes [2, 29, 34], and transport protocols. For example, TCP
provides in-order delivery, which incurs additional delay and
jitter for each packet loss event. As games employ different
designs and transport protocols, it is inevitable that players
will have diverse levels of QoS-sensitivity in different games,
unless we can separate the effects of network QoS, system
design, and transport protocols on players. This issue remains
to be solved.

III. TRACE COLLECTION

ShenZhou Online is a mid-scale, commercial MMORPG
that is popular in Taiwan [35], where there are thousands
of players online at any one time. To play, the participants
purchase game points from a convenience store or online. A
screen shot of ShenZhou Online is shown in Fig. 1. The
character played by the author is the man under the tree with a
round smiling face above him. He is in a typical market place,
where other players keep stalls. As is normal in MMORPGs,
a player can engage in fights with random creatures, train
himself in special skills, participate in marketplace commerce,
or take on a quest.

With the help of the ShenZhou Online staff, we set up
a traffic monitor beside the game servers. The monitor was
attached to a layer-4 switch upstream of the LAN containing
the game servers (we call it the “game LAN”). The port
forwarding capability of the tapped layer-4 switch was enabled
so that a copy of all inbound/outbound game traffic was for-
warded to our monitor. To minimize the impact of monitoring,
all remote management operations were conducted via an

Internet

Traffic Monitor

L3 switch

L2 switchL4 switch

Game & Database servers

Monitoring
interface

Management
interface

Game Traffic

Fig. 2. Network setup for traffic measurement

additional network path, i.e., the game traffic and management
traffic did not interfere with each other. The network topology
and setup of the game servers and the traffic monitor are shown
in Fig. 2. The traffic monitor was a FreeBSD PC equipped with
1.5 GHz Pentium 4 and 256 MB RAM. We used tcpdump with
the kernel built-in BPF to obtain traffic traces. In each trace,
we randomly chose a subset of game sets, and only packets
belonging to the selected game sets were logged. A game set,
which is logically a “game server” from a player’s viewpoint,
comprises an entry server, several map servers, and a database
server. All game sets are equivalent in content, but isolated.
The reason for providing identical game sets is to distribute the
players over a number of servers with limited game content,
e.g., terrain, missions, and creatures in the virtual world. We
took two packet traces, N1 and N2, which recorded traffic
for two and three game sets, respectively. The two traces,
which spanned 8 and 12 hours, respectively, and contained
more than 1, 356 million packets, are summarized in Table I.
Interested readers may refer to [6] for more details about the
characteristics of game traffic. The full data set is available
for research purposes on request1.

Although the traced game servers are centrally located at
one ISP, players are spread over 13 countries and hundreds
of autonomous systems. More specifically, the average RTTs
experienced by game sessions range from 95 ms to 580
ms, and the loss rates incurred range from zero to 20%
(computed by one percentile and 99 percentile, respectively).
The heterogeneous network path characteristics manifest that
our trace is not specific to a particular configuration.

IV. THE PLAYER DEPARTURE PROCESS AND ITS

SENSITIVITY TO NETWORK QOS

In this section, we first analyze the general departure
process of game players without considering the effect of
network conditions. We then present a correlation analysis
of the relationship between the player departure process and
the network conditions they experience. The purpose of the
correlation analysis is twofold: 1) to confirm the influence of

1Please visit http://mmnet.iis.sinica.edu.tw/download.html to request the
ShenZhou Online traffic traces.
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TABLE I
SUMMARY OF GAME TRAFFIC TRACES

Trace Sets Date Time Period Drops† Conn. Session Pkt. (in / out / both) Bytes (in / out / both)

N1 3 8/29/04 (Sun.) 15:00 8 hr. 0.003% 57, 945 7, 597 342M / 353M / 695M 4.7TB / 27.3TB / 32.0TB
N2 2 8/30/04 (Mon.) 13:00 12 hr. ?‡ 54, 424 7, 543 325M / 336M / 661M 4.7TB / 21.7TB / 26.5TB

† This column gives the kernel drop count reported by tcpdump.
‡ The drop count reported by tcpdump is zero, but we actually found some packets are dropped at the monitor.
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Fig. 3. Estimated hazard functions and survival functions for the observed
game sessions. The right-hand graph shows the probability estimate that a
player who has already played for time t will leave the game within the
next 10 minutes. Note that, on the graph, a probability of 5% is denoted as
0.005, which is multiplied by 10 because we are considering the departure
probability within the next 10 minutes instead of 1 minute.

network QoS on players’ premature departure patterns; and 2)
to serve as a quick way to identify factors that significantly
influence player behavior.

A. General Player Departure Pattern

We now investigate the general pattern of how much time
players invest in game playing. First, we consider the estimated
survival functions [23], which are semantically equivalent to
complementary cumulative distribution functions (CCDF), for
sessions on a weekend and a weekday respectively. As shown
in Fig. 3(a), the median game session time is 127 minutes and
92 minutes for the weekend and weekday, respectively. This
supports the common intuition that people generally have more
time for leisure activities on weekends than on weekdays. We
can highlight this difference in another way: while 31% of
players spend more than 5 hours in the game on a weekend,
only 18% of players do so on a weekday. Furthermore, both
survival curves are concave upwards (i.e., convex functions),
which indicates that players tend to stay longer when they
have been in the game for a long time.

The hazard function provides us a more direct way of check-
ing the departure “rate” of participants. The function, also
known as the conditional failure rate in reliability engineering,
or the intensity function in stochastic processes, is defined by

h(t) = lim
Δt→0

Pr[t ≤ T < t + Δt|T ≥ t]
Δt

.

The hazard function gives the instantaneous rate at which
failures occur for observations that have survived at time t.
In our context, the quantity h(t)Δt can therefore be seen as
the approximate probability that a player who has been in a

game for time t will leave the game in the next Δt period,
given that Δt is small.

We illustrate the estimated hazard functions in Fig. 3(b).
Both functions present continuous downward trends. The
hazard function on weekdays shows that the probability a
player will leave a game within a short time (10 minutes)
when s/he has been in the game for 30 minutes, 1 hour, 3
hours, and 6 hours is approximately 9%, 7%, 5%, and 3%,
respectively. The decreasing failure rate indicates that a player
who has played a game for a longer time has lower probability
of leaving any time, which is a remarkable feature of heavy-
tailed distributions [31].

The distribution of the observed game sessions was very
different from that reported in earlier studies of FPS (First-
Person Shooting) games [5, 13, 17], in which the session times
were not heavy-tailed. We attribute this discrepancy to the
difference in game genres. First, since FPS games are round-
based, players are forced to take a break after each round so
that they have a chance to regain consciousness of the real
world. In contrast, the adventures in MMORPGs are contin-
uous and endless, and no explicit mechanism exists to give
players a pause. According to flow theory, the time distortion
effect is more significant when a player is more involved in
the virtual world [26], i.e., players lose their sense of time and
therefore tend to spend more time in the virtual world. Second,
MMORPG players are likely to be locked into the game by
“social bonds.” For example, a player may endeavor to stay in
a game until the current mission is completed, because leaving
prematurely would affect the whole group’s adventure and
possibly damage his/her reputation in the game. While team
playing is also common in FPS games, the social bonds tend
to be short-lived because of the games’ round-based nature.

B. Correlation Analysis

Before evaluating the degree of untimely logouts from a
game owing to unfavorable network conditions, we define
“premature” player departure.

Definition 4.1: A premature departure occurs at time t,
denoted as PD(t), if a player leaves the game before playing
for t minutes. The time span t is called the observation period.

In the following, we check if different levels of network
impairment (i.e., network delay, delay variations, and packet
loss) annoy players and cause them leave the game earlier
than they would if the network quality were “perfect.” Below,
we define six QoS factors that could be relevant to gamers’
premature departures.

• Average RTT: the average round-trip transmission latency
of game data packets, which is a measure of interactivity
and responsiveness of game play.
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Fig. 4. Correlation of premature departures and network QoS factors

• Maximum RTT: the maximum round-trip transmission
latency of game data packets, which accounts for the most
unpleasant “lag” experience.

• Delay jitter: defined as the standard deviation of packet
round-trip times, which measures the instability of the
game’s response time.

• Average queueing delay: computed as the average round-
trip time minus the minimum round-trip time, which is
an estimate of the average queueing time accumulated
during network transmission.

• Client packet loss rate: the loss ratio of packets sent to the
server by game clients, which accounts for the additional
latency before a player’s command can be processed (by
the server), as loss detection and recovery cost some time.

• Server packet loss rate: the loss ratio of packets sent
from the game server to the client, which accounts for
additional latency before game messages or state updates
can be displayed on the client’s screen (i.e., presented to
the game player).

Our procedure for assessing whether a particular QoS factor
affects the occurrence rate of premature departure events is as
follows. First, the range of each QoS factor is divided into
several equal intervals. Then, we classify all the game sessions
into different groups according to which interval their QoS
factors fall into, and compute the proportion of prematurely
departed sessions within each group. The computed quantity
PDratio(x) is an approximation of the conditional probability
Pr(PD|x), where x denotes the midpoints of the intervals of
a QoS factor. The scatter plots for PD(10), i.e., premature
departures that occurred within 10 minutes of joining a game,
which represent the relationship between PDratio(x) and
x, are shown in Fig. 4. For each plot, we use Kendall’s
rank correlation coefficient τ [24] to quantify the strength
of the relationship between the QoS factors and the ratio of
premature departure events. A lowess smooth curve [9] is also
plotted to facilitate visual detection of the trend.

1) Factor Analysis: In Fig. 4, except for the maximum
RTT and the mean queueing delay, the factors show generally
positive correlations with the rate of premature departures.
This basically confirms our hypothesis that more serious
network impairment annoys players such that they are likely
to leave the game earlier (even though they may come back

later).
Effect of Queueing Delay: The average queueing delay,

however, has negative correlations with premature departures
when it is small, and shows no correlation with premature
departures when it is moderate to high. A detailed analysis
reveals that this is because sessions with short queueing delays
have much higher packet loss rates than those with long
queueing delays. Specifically, the median packet loss rate for
sessions with queueing delays shorter than 50 ms is 0.84%,
but for higher-queueing-delay sessions it is 0.08%, a ratio
of approximately 10:1. The combination of high packet loss
and short queueing delay could be due to certain congested
links that incur a high packet drop rate; however, since the
capacity is high, the queueing time is relatively short (the
queueing time is decided by both the queueing length and
the outgoing link bandwidth). On the other hand, there is
no correlation between moderate to long queueing delays
and premature departures. This suggests that queueing delay
is not a good indicator of network quality, as it does not
directly affect players’ perceptions of game responsiveness
and interactivity. In other words, players cannot distinguish
between specific components of the delay time (i.e., processing
delay, propagation delay, transmission delay, and queueing
delay). Instead, they only care about the total delay time that
they actually experience in the form of game “lags,” “jumps,”
slow responses, or inconsistent states between different peers.

Effect of Maximum RTT: There is no correlation between
maximum RTT and premature departures. This may because
the maximum RTT captures the worst network lags players
experience during the session, instead of the players’ average
experience. Even if the worst lag is intolerable, users may
be patient and wait for conditions to return to normal (as
network quality changes constantly over time). In this case,
the maximum RTT factor cannot capture the true feelings of
players based on premature departures.

Threshold Effect: The trend of the lowess curves in Fig. 4
indicates that the average RTT, delay jitter, and both packet
loss factors have a “threshold” effect, i.e., the impact of a
factor remains unchanged when its magnitude is small. For
example, the threshold of the average RTT is around 180
ms, so the premature departure probability only increases
with the average RTT when the latter is higher than 180
ms. This indicates that players may be insensitive to a
small amount of network impairment. The threshold effect
is commonly seen in measures of physiological reactions to
external substances [11]. For example, human responses to
drugs in terms of enzyme activity, membrane potential, heart
rate, or muscle contraction usually have a threshold effect.
Hence, the threshold effect we identified here could be seen
as evidence that premature departures successfully capture
players’ perceptions of network impairment.

2) Effect of the Observation Period: Fig. 4 shows the effect
of network QoS factors on premature departures with an ob-
servation period of 10 minutes. We now examine whether the
effect of network impairment remains the same with different
definitions of premature departure. To do so, we plot the rank
correlation coefficient between premature departures and QoS
factors with different observation times, as shown in Fig. 5.
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Fig. 5. Correlation of premature departures and network QoS factors

Of the six factors, the average RTT, delay jitter, and packet
loss rates in either direction all show strong correlations with
the premature departure ratio, regardless of the observation
points, as their correlation coefficients are consistently higher
than 0.5.

In contrast, the maximum RTT has a very weak and unstable
correlation (τ is between -0.4 and 0.2). Also, the queueing
delay has a unreasonable negative correlation. We discuss this
point in the subsection entitled “Effect of Queueing Delay”.
As neither factor has a consistent relationship with premature
departures, we exclude queueing delays and maximum RTT
from our considerations hereafter.

3) Summary: Although the correlation analysis presented
in this section reveals the effect of network conditions on
players’ departure times, it cannot quantify the full impact
of individual QoS factors exactly because of the collinearity
among the factors. For instance, the correlation coefficient
between the client packet loss rate and server packet loss rate
is strong (0.73); while the average RTT and delay jitter have
non-trivial correlations with the overall packet loss rates (0.2
and 0.15 respectively). Given that these factors have significant
positive associations with premature departures, we still need
to determine which one causes the most user dissatisfaction.
Players may be particularly unhappy because of one factor, or
they may be sensitive to all of them, with different levels of
intolerance. To determine the effect of individual QoS factors,
in the next section, we perform regression analysis, which
models each QoS factor as a predictor of the probability of
premature departures.

V. MODELING THE PROBABILITY OF PREMATURE

DEPARTURES

In this section, for the sake of clarity, we assume an obser-
vation time of 10 minutes. The effect of different observation
times is discussed in Section VI-B. We begin by describing the
logistic regression model, after which we discuss some issues
related to the model’s development, including the sampling
of QoS factors, adjustment of factor forms, predictability
analysis, and validation. We conclude this section with an
interpretation of the developed model.

A. Logistic Regression Model

For each game session, we now have two sets of data: 1)
a set of network QoS factors, which measure the network im-
pairment the session experienced and serve as predictors; and
2) the record of whether a premature departure event occurred
(yes or no), which serves as the response variable, therefore
it seems appropriate to apply ordinary linear regression mod-
eling. However, our case is not suitable for linear regression
because the required conditions for linear regression, including
the normality of errors and homoscedasticity of variance,
are violated. Moreover, dichotomous response variables are
difficult to deal with because they have ceilings and floors.
That is, if we treat the probability of premature departures
as the response variable in an ordinal linear regression, we
will always obtain a negative “probability” with sufficiently
small predictors, and a “probability” above one with suffi-
ciently large predictors. How to interpret these nonsensical
probabilities is a problem.

For the above problems, we apply logistic regression [10,
20] to model the impact of network QoS factors on prema-
ture departure events. The logistic regression model, which
belongs to a class of models known as generalized linear
models [15], is one of the most popular methods for predicting
the probability of the occurrence of an event by data fitting.
It resolves the above-mentioned problems by incorporating
binomial errors and a transformation of the linear predictor
to the logit, i.e., the logged odds. The odds of a probability
p are defined as p/(1 − p) so that the corresponding logit is
ln(p/(1 − p)). Assume that the risk vector (the network QoS
factors in our case) associated with a session i is Zi, then the
logistic regression equation can be formulated as

Pi = Pr(PD|Zi) =
exp(Li)

1 + exp(Li)
=

exp(βtZi)
1 + exp(βtZi)

, (1)

where Pi and Li are the predicted probability and logit of
premature departures for session i respectively, and β =
(β1, . . . , βp)t is the coefficient vector that corresponds to the
“intolerance” for one unit increment of each QoS factor. In
other words, the logit, which ranges from −∞ to +∞, rather
than the probability, which ranges from 0 to 1, is used as the
response variable in logistic regression. This explains why
logistic regression is appropriate for predicting the probability
of a certain event, as its response variable is always between 0
and 1 regardless of the magnitude of the predictors. To solve a
logistic regression equation, the parameter vector β is usually
estimated by maximizing the likelihood function

∏
{PYi

i × (1 − Pi)1−Yi}, (2)

where Yi indicates whether a premature departure event actu-
ally occurred (0 or 1) in session i.

B. Sampling of QoS Factors

To ensure that the model is tractable, we use a scalar value
for each risk factor to capture its effect on players’ gaming
experiences in a session. However, QoS factors, such as the
round-trip delay time, are not constant, but keep changing
during the game. Extracting a representative value for each
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Fig. 6. Evaluation of the sampling method for network QoS factors

factor in a session, which is analogous to feature vector
extraction in pattern recognition, is the key to determining
how well the model fits the observed departure behavior of
players.

Intuitively, the quantities averaged over the whole session
time should be a good way to obtain a representative feature.
However, (relatively) extreme conditions may have much more
influence on users’ overall perception than other conditions.
For example, users may quit a game immediately because of
serious network lags in a short period, but be unaware of mild
and moderate lags that occur all the time. Moreover, players
might be more sensitive to adverse network conditions than
desirable network quality (i.e., as it is “supposed” to be), or
vice versa. Players might still be happy if the network quality
is satisfactory most of the time, even if it is is intolerable
sometimes, or they may only consider the unsatisfactory
part, and leave as soon as they feel the playing conditions
are intolerable. These behavior patterns are only a few of
numerous possible ways a player might react to network
impairment. As no general and well-established perceptual
and behavioral models exist to describe players’ reactions to
perceived network impairment, we investigate how to derive
the most representative risk vectors.

We propose three measures to account for variations in
network quality over time, namely, the minimum, the average,
and the maximum of a factor, with two-level sampling. That is,
the original time series s is divided into a number of sub-series
of length w, from which network conditions are sampled.
This sub-series approach is intended to confine the measures
of network quality within time spans of length w, thereby
excluding the effect of large-scale variations. The respective
minimum, average, and maximum measures with lengths equal
to �|s|/w� are computed for each sampled QoS factor. We then
decide which of the three measures is the most representative
for describing a user’s perceived experience during the game.

We evaluate different combinations of measures and win-
dow sizes by fitting the extracted QoS factors into a logistic
model and checking the models’ log-likelihood value, which

is an indicator of goodness-of-fit. As Fig. 6 shows, the client
packet loss rate and server packet loss rate are best sampled
with an overall average in the whole session time, i.e., with
w = |s|. We believe this result is due to the following
reasons: 1) the game packet rate is low (generally less than
10 packets/second), and 2) packet loss is rare. Thus, a large
window would be more appropriate because a short time series
may not contain enough samples to capture the true packet loss
probability along the network path.

On the other hand, the minimum values of the average RTT
and the RTT standard deviation in consecutive windows are the
most representative. That is, we choose the minimum average
RTT and minimum RTT standard deviation and sample both
with a window size of 10 seconds. (For simplicity, we use
delay and delay jitter to refer to the sampled average RTT
and RTT standard deviation variables respectively.) The small
window size implies that players are more sensitive to short-
term, rather than long-term, effects of network quality. This
behavior is reasonable because long-term fluctuations in net-
work quality should have no influence on the real-timeliness
of game playing. The sampling method of the RTT standard
deviation indicates that players are tolerant of infrequent
extreme variations in network latency, and more sensitive to
delay fluctuations that occur in every 10-second period. The
sampling of both RTT-related factors consistently chooses the
value that represents the best (averaged) quality a player
experienced. This interesting finding could be further verified
by cognitive models that explain why good experiences (rather
than bad experiences) have a stronger effect on players’
departure decisions.

C. Model Fitting

Since our two traces were recorded on a weekday and a
weekend respectively, the day of the week effect should be
incorporated into the modeling, if appropriate. For a 10-minute
observation period, the proportion of premature departures on
weekdays and weekends was 6.8% and 7.0% respectively,
which yields an odds ratio of 0.96. This difference between
the two groups of sessions yields a p-value of 0.67 in Fisher’s
test [14], which fails to reject the null hypothesis that their
odds are equal. Furthermore, if we take the binary variable
weekend as the only predictor in the logistic regression, both
the Wald statistic and the likelihood ratio test indicate that
weekend is insignificant with a critical value of 0.2. All
of these tests indicate that the day of the week does not
cause players to leave a game prematurely. Compared to
the discussion in Sec. IV-A, the phenomenon indicates that,
although users generally spend less time playing games on
weekdays, the time constraint on weekdays is not so stressful
that players are forced to quit the game within a short time,
e.g., 10 minutes. Thus, we do not include the weekend
variable in the model.

Like ordinary linear regression models, the logistic model
assumes that the contribution of each risk factor to the
response variable is linear and additive on the logistic scale.
To check whether our QoS factors confirm this assumption, we
fit the data into a generalized addictive model with smoothing
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Fig. 7. The functional form of the four factors

splines [15]. The estimated impact of the four factors, as
well as the two-standard-error confidence bands, versus their
magnitude, are plotted in Fig. 7. The Y-axis represents the
contribution of each factor to the logit of the response variable;
specifically, it is an estimate of βXX of factor X with different
magnitudes. A nonlinear relationship between the impact of
and the magnitude of a factor X indicates that its coefficient
βX is not constant over all levels, which contradicts the
assumption of the binary logistic regression model.

According to Fig. 7, both the delay and the delay jitter have
approximately proportional impact on the premature departure
probability; thus, no adjustment should be made. On the
other hand, packet loss rates exhibit very different behavior
compared to the delay-related factors. First, we observe that
the influence of packet loss rates in either direction is not pro-
portional to their magnitude. A common solution to modeling
non-proportional variables is to use scale transformation. By
taking logarithms, packet loss rates have a smoother influence
on the logit of premature departures (indicated by the gray
lines in Fig. 7(c)(d)), and yield much better goodness-of-
fit. This indicates that the premature departure probability is
more proportional to the scale of packet loss rate, than its
magnitude. In other words, if we denote the impact of the
loss rate p on premature departures as imp(p), imp(p) ∝ p
if the impact of the packet loss on premature departures is
proportional, and imp(p) ∝ log(p) if the impact of packet
loss is proportional to the scale of the loss rate. However,
the logged packet loss rates still have a nonlinear impact on
premature departures, and present a threshold effect. As a
result, the impact of packet loss on premature departures seems
to have an upper limit, instead of increasing unboundedly. This
implies that players are already intolerant of moderate packet
loss and tend to leave prematurely; thus, a higher packet loss
rate would not cause further behavioral changes. We solve
the disproportionality by mapping the logged packet loss rates
to a logisitic equation (sometimes called the Verhulst model
or logistic growth curve), which is commonly used to model
a dose-response curve [11]. The general form of a logistic

TABLE II
COEFFICIENTS IN THE FINAL MODEL

Variable Coef Std. Err. z P > |z|
delay 12.49 2.11 5.93 0.00
jitter 86.14 6.35 13.57 0.00
closs 1.07 0.18 6.12 0.00
sloss 1.16 0.45 2.57 0.01
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Fig. 8. Seeking a classification threshold for the estimated probability

equation is defined as

f(t) =
asym

1 + exp((xmid − t)/scale)
,

where asym, xmid, and scale are real parameters. The
logistic equation has a sigmoid shape so that it can capture the
threshold effect of our factors. From Fig. 7(c)(d), we observe
that the logistic mapping from the packet loss rates to their
impacts is reasonable in that the red lines are constantly within
the 50% confidence band at all levels.

Finally, we obtain a fitted logistic regression model, as
shown in Table II. To assess the overall goodness-of-fit, we
use the Hosmer-le Cessie test [19], which reports p = 0.40,
indicating that our model fits the data reasonably well.

D. Assessment of the Model Adequacy

Usually, the adequacy of a logistic model is assessed via a
classification table, which is derived by classifying predicted
probabilities by a cutpoint c. If the estimated probability
exceeds c, it is assumed that players will quit the game
prematurely. The most intuitive value for c is 0.5. However,
this cutpoint does not usually yield good classification results,
since the results are heavily dependent on the distribution
of events, i.e., the proportion of premature departures that
occurred. We can calibrate the model by choosing a cutpoint
that maximizes both the sensitivity and the specificity of
the classification. Fig. 8 plots the sensitivity and specificity
obtained by using cutpoints in the range 0 to 1. Choosing
c = 0.06 yields the minimum difference between two curves,
where both the sensitivity and the specificity are equal to 78%.
A more complete description of the classification accuracy is
given by the C-index [22], which is equal to the area under
the ROC (Receiver Operating Characteristic) curve [12]. The
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C-index for our model, 0.87, indicates generally good discrim-
ination compared to a C-index of 0.5, which is equivalent to
a random guess.

To demonstrate the predictive power of our model, we
compare the observed proportion of premature departures and
the predicted probabilities of premature departures, as shown
in Fig. 9. The red crosses mark the proportion of premature
departure events in each group, which is along the 45◦ straight
line through the origin. The figure shows that the predicted
probabilities match the actual probability well, which implies
that the general prediction accuracy of our model is good.

E. Model Cross-Validation

Our model’s prediction accuracy might be due to the fact
that it actually captures the relationship between variables, or
it might be due to overfitting. To confirm that the model does
not overfit the data, we use cross-validation to further verify
its adequacy.

The cross-validation steps are as follows: 1) randomly
divide all the game sessions into two equal-sized groups:
a modeling group and a validation group; 2) fit a logistic
model with the modeling group; 3) predict whether premature
departure events have occurred for the validation group based
on the fitted model, and compute the prediction accuracy; and
4) repeat steps 1–3 one hundred times.

Fig. 10 shows the cross-validation results. The prediction
accuracy differs according to the length of the observation
time. The median correct rates are generally higher than 70%
for observation times shorter than 30 minutes, and higher than
80% for times shorter than 10 minutes. We find that the cor-
rect rates in the worst cases can be quite low in some scenarios,
e.g., with the observation time of 14 minutes. We attribute this
phenomenon to the high variability of game session times.
In addition to the quality of network conditions, there are
many exogenous factors that could affect players’ decisions
to continue with a game or leave it. For example, players
may be tied by quests on hand or social bonds, even when
network conditions are poor and screen updates are jerky. On
the other hand, they may leave a game because of prearranged
events, schedule constraints, or physical conditions. Although
the worst-case prediction performance in the model’s cross-
validation is not good, overall, the median correct rates are
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Fig. 10. Validation of model fitting with cross-validation

acceptably high, especially when the observation time is
shorter than 10 minutes. This demonstrates that the model’s
accuracy is not a consequence of data overfitting.

F. Model Interpretation

In Table II, we present the estimated coefficients along
with their standard errors and p-values for the fitted logistic
model. All variables are significant at a significance level of
0.1. The coefficients of the model can be interpreted by odds
ratios. Since the magnitude of a coefficient implies a change
in the response (in the logit scale) for a one-unit increase
of the covariate, the odds ratio between two risk vectors
can be obtained by exponentiating their difference in logit
form. For example, assume that two players experience similar
network conditions, except for delay jitter of 20 ms and 10 ms
respectively. The odds ratio of these two sessions can then be
computed by exp((0.02 − 0.01) × 86.14) ≈ 2.4, where 86.14
is the coefficient of the covariate jitter. That is, the odds that
player A will leave the game prematurely are 2.4 times higher
than the odds that player B will leave prematurely (i.e., quit
the game within 10 minutes of joining).

VI. MODEL IMPLICATIONS AND APPLICATIONS

In this section, we first discuss the implications of our
analysis results for other game genres. We then present a
predictability analysis of players’ premature departure behav-
ior. Next, we investigate the relative impact of various types
of network impairment on user perception. We conclude the
section by discussing how our model can be used to improve
system design, in terms of server processing scheduling, de-
jitter buffer dimensioning, and the choice of transport proto-
cols.

A. Implications for Other Game Genres

MMORPGs are slow-paced compared to other popular
genres, such as first-person shooting games, which require
players to make sub-second decisions. In addition to a game’s
pace, there is a great deal of difference in how players control
the virtual characters. In fast-action games like shooting,
players instruct characters “what” actions to take and “how” to
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perform those actions. Specifically, to move a character to a
new location, a player must control each step the character
takes (e.g., three steps west followed by five steps north).
In contrast, in slow-action games like MMORPGs and real-
time strategy games, players only instruct characters “what”
to do, i.e., they only need to point out the location the
character should move to, and it will automatically move
toward the destination via a route that is either pre-determined
or computed on-the-fly. MMORPGs are classified as slow-
action games, which have less stringent service requirements
than fast-action games. Therefore, as our analysis indicates
that poor network QoS frustrates MMORPG players, it is
reasonable to assume that it will also affect players of other
online game genres that run at a faster pace.

B. Player Predictability

We define predictability as the degree of association be-
tween players’ departure times and the network conditions
they experience. The stronger the association, the easier it is to
predict whether a premature departure event will occur within
a specific period. This prediction analysis is motivated by the
question: What is the best time to predict whether players will
leave a game prematurely?

We evaluate the effect of the observation time on the
predictability of premature departures by the C-index of the
fitted logistic model. To ensue that the C-index is comparable
between models with different observation times, we randomly
remove a few game sessions so that all game sessions have
a fixed proportion of premature departure events, say, 5%.
As shown in Fig. 11, player predictability, not surprisingly,
constantly decreases with longer observation times. The down-
ward trend to the right indicates that departure events are less
predictable for players who have stayed longer. One reasonable
explanation could be the addictive feature of MMORPGs.
Once players have been immersed in the virtual world for a
while, they may enter the flow state [26] such that the effects of
network impairment are mitigated. Another explanation could
be that, as players have been in the game for a long time,
extraneous factors, such as schedule constraints, tiredness, or
social interaction, have a significant effect on their decisions
to stay or leave. For example, players may want to stay in the
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game until they complete the current mission because they will
lose all the rewards if they quit before completion; or, they may
hesitate to leave because of “social bonds,” as current game
partners may not be online at other times.

Returning to our question about the best time to predict
premature departures, we can say that the earlier the observa-
tion is made, the better the prediction accuracy will be. As a
general rule, we consider that an observation time shorter than
20 minutes is reasonable because the resulting predictability
is acceptably high (i.e., the C-index is higher than 0.8).

C. Impact of QoS Factors

Our model for premature departures also enables us to
quantify the relative influence of QoS factors. The influence
of a QoS factor, X , is computed as follows:

1) compute the risk score vector L with risk vectors Z;
2) compute the risk score vector LX with risk vectors ZX,

where the factor Xi for each session i is set to min(Xi);
3) compute the relative influence of X as L − LX , and

normalize it by a total score of 100.
The computed relative influence of each QoS factor is shown
in Fig. 12. On average, the degrees of players’ “intolerance” to
delay, delay jitter, client packet loss, and server packet loss are
in the proportion 1:2:4:3. That is, a player’s decision to leave
a game prematurely due to unfavorable network conditions
is based on the following levels of intolerance: average RTT
(10%), RTT variations (20%), client packet loss (40%), and
server packet loss (30%). Next, we consider the implications
of these ratios.

• Delay jitters are less tolerable than absolute delays.
While most earlier QoS-sensitivity studies completely
neglected the impact of delay jitters, we argue that jitters
are relevant to players’ online gaming experiences. This
also suggests that, while current network games rely
primarily on “ping time” to select a server for smooth
game play, delay jitters should also be considered in
the server selection process. However, measuring delay
jitter requires more time and network resources than
measuring ping times; thus, how to balance the resources
spent in probing network conditions and the reliability of
measurement results merits further investigation.
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• Packet loss is much less tolerable than packet delay.
Comparing the overall influence of network latency and
network loss, we obtain a ratio of 3:7. This result is not
consistent with an earlier study of Unreal Tournament
2003 [4], where the authors reported that network latency
< 200 ms and network loss < 6% have a statisti-
cally weak impact on user performance. We believe this
discrepancy is due to the different transport protocols
employed.
While most FPS games use UDP to exchange informa-
tion between game peers, many MMORPGs, including
ShenZhou Online, use TCP. Since TCP provides in-order
delivery and congestion control, a lost packet will cause
subsequent packets to be buffered until it is successfully
delivered, which reduces TCP’s congestion window. On
the other hand, packet loss does not incur any overhead
in UDP. Thus, in TCP-based games, packet loss incurs
additional packet delay and delay jitters, both of which
further degrade players’ gaming experience. We discuss
the effect of transport protocols in the next subsection.

• Client packet loss is slightly less tolerable than server
packet loss. We consider this to be reasonable, since
client packet loss delays the players’ commands to the
server, whereas server packet loss delays responses to
the commands as well as state updates. Current MMOGs
are mostly server-centric, so a player’s command is not
effective until it has been processed by the server. In
addition, to speed up the responses to players’ commands,
game clients may “cheat” by displaying the expected
states in response to players’ own commands on receipt
of players’ inputs before those inputs validated by the
server. Thus, server packet loss only impacts on the
consistency between players’ views of the virtual world,
not the responsiveness to players’ inputs. As a conse-
quence, client packet loss, which may delay the players’
commands, such as attacks and spell casting, is more
annoying than server packet loss, which just delays the
server’s responses and screen updates.

D. Impact of Transport Protocols

Although TCP is generally considered to be unsuitable for
interactive and real-time communications, many MMORPGs
adopt it as their underlying transport protocol. One reason
is that TCP is stream-oriented, so that the message stream
at the sender will be identical to the stream received at the
destination. This property allows game developers to focus
on game development, and leave issues related to network
transmission to TCP. However, TCP can degrade message
transmission efficiency because the stream-oriented feature
is not required for each game message exchange; hence the
protocol’s in-order and reliable delivery might lead to overkill
sometimes.

To quantify the degradation of game message transmission,
we estimate the in-order delivery overhead in terms of the
additional delay jitters incurred. We believe that in-order
delivery is not necessary for all game messages for the
following reasons:
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Fig. 13. Reducing the probability of players’ premature departure by
providing more resources for high-risk sessions to ensure shorter delays or
less delay jitters.

• Many game messages are accumulative in nature, i.e.,
subsequent messages will override earlier ones. For exam-
ple, state updates, especially position updates, are usually
accumulated so that a missing message does not matter,
unless it is the last in a series of updates. Thus, a series
of accumulated commands, except for the last, could be
delivered in an unreliable and out-of-order manner.

• Some game messages can be processed in any order.
For example, server packets are primarily comprised
of accumulated state updates, dialogue messages, and
responses to queries, such as information about virtual
items. With the exception of dialogue messages, server
packages can usually be processed in any order.

To assess how much additional delay jitters are induced by
enforced packet ordering, we assume an extreme case where
game packets can be processed in any order. For our traces,
the average delay jitters are estimated in two ways: 1) 30
ms if delays induced by retransmitted packets are considered;
or 2) 18 ms if delays induced by retransmitted packets are
not considered. Based on the premature departure prediction
model developed in Section V, we estimate that the odds
of premature departure would be reduced by a factor of
exp((0.030− 0.018)× 86.14) ≈ 2.8 if additional delay jitters
could be eliminated. This corresponds to a 12% decrease in
the premature departure probability (from 20% to 8%) with an
observation time of 30 minutes. In this way, we can estimate
the degree of improvement if we replace TCP with a more
lightweight protocol that only orders packets when necessary.
Also, the result explains why packet loss generates so much
more intolerance among MMORPG players than FPS players
(Section VI-C).

E. Improving the Gaming Experience

In Section IV, we showed that the player departure rate
generally decreases over time; that is, the longer players
remain in a game, the less likely they are to leave the game in
every instant. Furthermore, in Section VI-B, we showed that
the relative influence of network impairment decreases over
time, as extraneous factors, such as social bonds, gradually
outweigh the effect of network QoS on players’ decisions
to continue or leave a game. By combining both properties,



12

we propose a strategy that makes a game more sticky by
temporarily allocating more resources to players who have
just joined a game and have a higher probability of leaving
prematurely due to unsatisfactory network conditions..

Specifically, to ensure that players do not leave quickly, we
can temporarily raise the packet rate if the high risk of their
premature departure is due to long propagation delays or a
high loss rate on a noisy link, rather than transient congestion.
Alternatively, we can increase the degree of data redundancy to
cope with serious network impairment. Once the players have
settled down and become immersed in the game play, they
are relatively less sensitive or reactive to network impairment,
i.e., they may remain in the game even if the network quality
deteriorates. It could be that players are reluctant to quit
because they have invested so much time in the current session;
or they are simply more tolerant of network impairment as
they are in the flow state (i.e., addicted). In either case,
by allocating extra scarce resources to the more demanding
players, we may increase the overall game playing time and
user satisfaction. Our model could also be treated as a utility
function to evaluate alternative design choices. For example,
suppose a number of transport protocols have been designed
for a particular game, and one protocol performs better in
terms of network latency than loss recovery. In this case, we
can predict the probability of premature departures for each
candidate protocol, and pick the protocol that yields the lowest
premature departure probability.

The following examples demonstrate how our model can be
used to help make design decisions that will improve players’
gaming experiences.

• One way to increase the responsiveness of game play is to
reduce the processing time. As server processing power
is finite, we can only sacrifice the responsiveness of low-
risk sessions (i.e., those with better network conditions)
to enhance that of high-risk sessions, so that messages
from high-risk sessions will be given higher priority. We
define sessions with the highest 25% risk scores as high-
risk sessions, and those with the lowest 25% risk scores
as low-risk sessions. For each “target” round-trip time
t, we fairly defer the processing of low-risk sessions in
order to make the round-trip time of high-risk sessions no
longer than t. The simulation results for this configuration
are shown in Fig. 13(a). We find that the predicted
premature departure probability constantly decreases with
a shorter target round-trip time. If the target round-trip
time is set to 60 ms, the overall premature departure
probability is expected to decrease by 10%. This indicates
that sacrificing the responsiveness of low-risk sessions
to help high-risk sessions in terms of responsiveness is
feasible, as the former may still provide an acceptable
gaming experience with degraded responsiveness.

• As delay jitters are less tolerable than absolute delays
(see Section VI-C), we demonstrate how de-jitter buffers,
which stall arrived packets in exchange for reduced delay
jitters if necessary, reduce the probability of players’
premature departure. The length of our de-jitter buffer
is very similar to that of the RTO (TCP’s Retransmission
Timer) calculation SRTT + k ×RTTV AR [30], where

SRTT and RTTV AR denote the smoothed round-
trip time and round-trip time variation respectively; we
choose k = 2 for our setting. As shown in Fig. 13(b),
the premature departure probability reaches a minimum
when the proportion of de-jitter buffer users is around
0.3, where sessions adopt the de-jitter buffer based on the
decreasing order of their delay jitters (high-jitter sessions
are considered first). The reason is that, while the de-jitter
buffer is beneficial for high-jitter sessions, it introduces
unnecessary overhead for low-jitter sessions by incurring
long delay times. The result shows that, if sessions with
the highest 30% delay jitters are equipped with de-
jitter buffers, the overall premature departure probability
declines by 4%.

VII. CONCLUSION

To understand the relationship between network quality
and players’ departure patterns, we analyzed a 1, 356-million-
packet trace from a commercial MMORPG called ShenZhou
Online. Our results indicate that both network delay and
network loss significantly affect a player’s decision to leave
a game prematurely, i.e., the player quits a few minutes
after joining a game. We show that it is feasible to predict
whether players will quit prematurely based on the network
conditions they experience. The proposed model can determine
the relative impact of different types of network impairment.
For our traces, the degrees of player intolerance of network
delay, delay jitter, client packet loss, and server packet loss
are in the proportion of 1:2:4:3 approximately. The model
is very useful for evaluating system design decisions. By
using the model, we have shown that 1) the premature depar-
ture probability can be significantly decreased by prioritizing
server processing according to sessions’ risk scores; 2) de-
jitter buffers can reduce the probability of premature departure;
and 3) if we replace the commonly used protocol, TCP, with a
more lightweight transport protocol to eliminate the additional
delay jitters caused by TCP’s in-order delivery, the premature
departure probability can be significantly reduced.

Although many network researchers have focused on ways
to measure users’ opinions about network performance objec-
tively, there is still no consensus on game players’ sensitivity
to and intolerance of network conditions. This may be because
users’ perceptions are inevitably connected to the nature of the
game genre, playing skills, system design and implementation
details, and particularly the choice of transport protocol. A
player who is intolerant of 200 ms latency and a 1% loss
rate for a game may have difficulty in playing another game
under the same network configuration. The key to resolving
the inconsistency is to separate the effects of network QoS,
system design, transport protocols, and their interaction on
game players. How to generalize the measure of users’ QoS-
sensitivity so that the measures of different applications can be
normalized and compared with one another remains an open
question and will be a major theme of our future work.
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