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Abstract

With the emergence of active worms, the targets of at-
tacks have been moved from well-known Internet servers to
generic Internet hosts, and since the rate at which patches
can be applied is always much slower than the spread of a
worm, an Internet worm can usually attack or infect mil-
lions of hosts in a short time. It is difficult to eliminate
Internet attacks globally; thus, protecting client networks
from being attacked or infected is a relatively critical issue.

In this paper, we propose a method that protects client
networks from being attacked by people who try to scan, at-
tack, or infect hosts in local networks via unpatched vulner-
abilities. Based on the symmetry of network traffic in both
temporal and spatial domains, a bitmap filter is installed at
the entry point of a client network to filter out possible at-
tack traffic. Our evaluation shows that with a small amount
of memory (less than 1 megabyte), more than 95% of attack
traffic can be filtered out in a small- or medium-scale client
network.

1 Introduction

An active attack is behavior that deliberately scans,

probes, or intrudes on certain hosts or networks with mali-

cious intent. Due to the popularity of Internet worms, there

is always active attack traffic on the Internet. Attacks usu-

ally adopt a random IP scanning technique and infect hosts

through one or more known vulnerabilities. Thus, com-

pared with traditional Internet attacks, the victims are not

limited to well-known Internet servers. Instead, anonymous

client hosts have become targets for attackers. As client ma-

chines now have wider bandwidth and more computation

power, recent studies [6, 13, 21] have shown that an active
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worm can efficiently spread among millions of hosts in a

short period of time. Even if a network does not have vul-

nerable hosts, a huge number of random scanning packets

from infected hosts can occupy precious network resources.

Furthermore, vulnerable hosts may be infected by malicious

intruders and then form a larger attack group.

A simple way to prevent a network being attacked or

infected is to limit illegal traffic entering the network by

installing a bandwidth throttling mechanism and/or an in-

trusion prevention mechanism at the entry point of the net-

work. Since the bottleneck bandwidth usually lies on the

link between the client network and the ISP, these mecha-
nisms must be installed at the ISP side, not the client net-
work side in order to better utilize the bottleneck bandwidth.

However, there are three major problems with a band-

width throttling mechanism. First, since attack packets may

use spoofed source IP addresses, a throttling mechanism

may be not able to effectively identify attack traffic through

aggregates. Second, even if an aggregate can be identified,

only rate-limiting an aggregate at the edge may completely

shutdown all connections depending on the aggregate. Fi-

nally, an attacker may not send a large volume of traffic,

especially in the early stages of the attack so that the throt-

tling mechanism would not be activated.

Intrusion prevention mechanisms also have drawbacks.

In general, such solutions can be classified as either

anomaly or misuse mechanisms. An anomaly solution mon-

itors current network behavior and compares it with normal

behavior. Any deviation from normal activity is treated as

suspicious and possibly indicative of a hitherto unknown

attack. However, this approach can generate both false

positives and false negatives so that normal behavior may

be treated as an attack or vice versa. In contrast, a mis-

use solution collects the signatures of well-known attacks

and checks if any traffic matches patterns in the signature

database. Although these solutions are more precise than

anomaly mechanisms, they cannot detect unknown attacks.

Given the shortcomings of the above mechanisms, we

must seek a better solution to make client networks robust
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against malicious attacks. A good candidate may be to in-

stall a stateful packet inspection (SPI) filter at the entry

point of a client network to maintain the per-flow state of all

outgoing connections. Thus, an intentionally active probe

or intrusion that the packet filter has not encountered before

would be dropped. However, installing such a mechanism at

the ISP side incurs a high computational cost as the required

storage space and computation complexity depends linearly

on the number of concurrent active connections, which may

be in the order of tens of thousands or even millions. Thus,

we need a more lightweight and efficient solution.

In this paper, we propose a bitmap filter mechanism that

mitigates active attacks, either DoS-like bandwidth attacks

or active worm-like intrusions. The effectiveness of the

bitmap filter is similar to that of an SPI filter, but it requires

much less storage space and computational resources.

The remainder of this paper is organized as follows. In

Section 2, we review related works. In Section 3, we dis-

cuss the usage model, client network traffic characteristics,

and the detailed design of the bitmap filter. In Section 4

and Section 5, respectively, we evaluate the performance of

the bitmap filter and discuss issues related to the proposed

solution in detail. Finally, in Section 6, we present our con-

clusions.

2 Related Works

A great deal of research effort has been devoted to de-

velop defenses against malicious attacks. While Internet

users cannot tolerate high false positive rates, most imple-

mentations [4,7,16] of intrusion detection or prevention sys-

tems are misuse (also known as rule-based) mechanisms.

The major differences among these implementations are the

database lookup engine, the backend database, and the sup-

port service. Research in this area focuses on improving the

performance of signature lookup, reducing the number of

false positives and false negatives, and automatic signature

generation [18]. The major problem with rule-based intru-

sion/prevention systems is that they cannot detect unknown

attacks. Since generating and propagating new signatures

is always slower than the spread of new types of attack, a

network will be at risk until a patch or a signature for a new

attack is released to the public.

Distributed denial of service (DDoS) counter-attack

mechanisms can also be considered as solutions. However,

they may not be suitable for attacks against a client net-

work. An ingress filtering approach [8] is good for filter-

ing outgoing packets with spoofed source addresses, but it

may be not suitable for filtering incoming packets. Trace-

back mechanisms [14, 15], overlay networks [10, 17], and

capability-based packet filtering [1,20] solutions are expen-

sive computationally for a client network, since they require

global deployment, cross-ISP cooperation, or modification

of existing network architecture and usage models.

Bandwidth throttling mechanisms, such as those pro-

posed in [5, 9, 11], adopt quality-of-service (QoS) mecha-

nisms to rate-limit incoming packets. Before doing so, how-

ever, these mechanisms have to know that an attack is in

progress, identify aggregates, and then apply rate-limiters

to the identified aggregates. An aggregate is a common

characteristic extracted from packets. For example, all UDP

packets with a destination port of 445 is one type of aggre-

gates.

However, there are a number of problems when deploy-

ing bandwidth throttling mechanisms in client networks.

First, if attack packets sent to different clients in the same

network contain random source IP addresses and destina-

tion ports, the aggregate is difficult to identify. In addition,

if all traffic for a given port is rate-limited, normal traffic

sent to the same destination port are also limited. This may

result in denial of service for certain applications. Finally,

if an attack is launched at a slow rate, the bandwidth throt-

tling mechanism may not be triggered. The study in [5]

concludes that a bandwidth throttling mechanism is suitable
for a network that holds the following conditions: 1) The
target to be attacked is clear; 2) there are several up-links
for the network and attacks only come from some of these
up-links; and 3) it would be better if the deployment of rate-
limiters is closer to attackers. Although it may be easy for a

server network to meet these conditions, it may be difficult

for a client network, since a client network usually holds
only one or two up-links, the attack target is often a group
of random hosts, and the rate-limiters can only be installed
close to the client network.

Compared to all the above solutions, we believe that an

SPI-based mechanism is a better choice for client networks.

However, since an SPI mechanism has to keep all per-flow

states, adopting it incurs high cost for an ISP. Take a pop-

ular SPI implementation in the Linux open-source operat-

ing system [19] as an example. The required storage space

grows linearly according to the number of kept flows. Be-

sides, the data structures used to maintain these states are

basically link-lists with an indexed hash table that reduces

the length of a link-list. Obviously, both the storage and

computation complexities are O(n), which is not affordable

for a larger ISP containing several client networks.

3 The Bitmap Filter

By definition, a client network should have only client

hosts, such as a business enterprise customer, a group of

DSL users, a wireless network, or a building on a cam-

pus. Usually client hosts only initiate requests, and sel-

dom receive requests from the Internet. The bitmap filter

is a lightweight and efficient method designed to mitigate

active attacks, including bandwidth-attacks, intrusions, and
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worms. In this section, we introduce the usage model, the

client traffic characteristics, and the detailed design of our

solution.

3.1 The Usage Model

Bitmap filters should be installed in an ISP network. As

shown in Figure 1, an ISP usually has edge routers (black

nodes) and core routers (white nodes). The bitmap filter can

be installed on an edge router directly connected to a client

network or a core router, which is an aggregate of two or

more client networks. In Figure 1, the nodes with an out-

lined circle are possible locations to install the bitmap filter.

Actually, the bitmap filter can be installed at any location

through which traffic from client networks must pass.

ISP 

network

Client network
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n
et
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o
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Edge routers

Core routers

Possible 
Installations

Figure 1. An ISP network with bitmap filters.

3.2 The Client Network Traffic Charac-
teristics

The design of the bitmap filter leverages certain client

network traffic characteristics to improve the filter perfor-

mance. Thus, before constructing our solution, we make an

observation about several client networks. A 6-hour TCP

and UDP packet trace was collected on a core router be-

tween 10AM and 4PM on a weekday. The router aggregates

the up-links of six class C client networks on a campus.

In the 6-hour trace, 96.25% were TCP packets and 3.75%

were UDP packets. The average packet rate was 24.63K per

second, the average bandwidth utilization was 138.55Mbps,

and the average packet size was 720 bytes. First, we exam-

ine the connection lifetime of TCP connections in the trace

data. The lifetime of a connection is counted from the ap-

pearance of the first TCP-SYN packet to the appearance of

a TCP-FIN or TCP-RST packet. The connection lifetime

varies widely from a minimum of several milliseconds to

a maximum of six hours, as shown in Figure 2-a (data ex-

ceeding the 12000th second are removed, since there are

no more peaks). However, the lifetime of most connec-

tions is short. The statistics show that 90% of connections

are under 76 seconds, 95% are under 6 minutes, and less

than one percent last for more than 515 seconds. Although

the lifetime for each connection varies greatly, an interest-

ing phenomenon is that the out-in packet delay is always
short. Before introducing out-in packet delay, we define

two types of packet. An outgoing packet is a packet sent

from a client network, while incoming packet is a packet re-

ceived by a client network. A packet always contains its ad-

dress information in a tuple τ of {source-address, source-

port , destination-address, destination-port}. Thus, for

an outgoing packet with an address tuple of τout =
{saddr , sport , daddr , dport}, the address tuple of its cor-

responding incoming packet should be in an inverse form,

that is τin = {daddr , dport , saddr , sport}. Note that for

an outgoing packet and its corresponding incoming packet,

τ−1
in , which is the inverse of the tuple τin , and τout should

be the same. Based on these definitions, the out-in packet

delay is then obtained as follows:

1. On receipt of an outgoing packet with an address tu-

ple τout = {saddr , sport , daddr , dport} on an edge

router at timestamp t, the router checks if the tuple has

been recorded previously. If the tuple is new, it is as-

sociated with the timestamp t and stored in the edge

router’s memory. Otherwise, the existing tuple is up-

dated with the timestamp t.

2. On receipt of an incoming packet with an address tu-

ple τin = {daddr , dport , saddr , sport} at timestamp

t, the edge router checks if the inverse tuple τ−1
in has

been recorded before. If it already exists, the times-

tamp associated the inverse tuple τ−1
in is read as t0 and

the out-in packet delay is computed as t − t0.

3. To avoid the problem of port-reuse, which affects the

accuracy of computing the out-in packet delay, an

expiry timer Te deletes existing address tuples when

t − t0 > Te.

The out-in packet delay may be caused by network propa-

gation delay, processing delay, queueing delay, or mecha-

nisms like delayed-ACK [3]. However, they should not be

too long. The statistics of out-in packet delay are shown in

Figure 2-b. Since we use a large timer, Te = 600 seconds,

to handle expired address tuples, in Figure 2-b, the effect of

port-reuse can be observed roughly at the peaks. Although

the port-reuse timer varies in different implementations, we

find that most of them are in multiples of 60 seconds. The

statistics also show that most out-in packet delays are very

short. In Figure 2-c, 99% of out-in packet delays are under

2.8 seconds. The result also implies that the most Internet

traffic is bi-directional.
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Figure 2. Traffic characteristics extracted
from a client network. The sampled traffic is a
6-hour packet trace collected from six class-
C client networks on a campus.

3.3 Construct the Bitmap Filter

Based on the observations that 1) the client network traf-

fic is bi-directional, and 2) most out-in packet delays are

short, a naı̈ve solution is to filter out unwanted traffic. Sup-

pose that a timer with an initial value of T is associated

with the address tuple τout = {source-address, source-

port , destination-address, destination-port} of each out-

going packet that is new to an edge router. If the tuple τout
is not new to the router, the value of the associated timer is

simply reset to T . The timer reduces every time unit Δt.
When the timer expires (reaches zero), the associated ad-

dress tuple is deleted. For each incoming packet, the router

extracts the address tuple τin and checks if the inverse tuple

τ−1
in exists. If it exists, the packet is bypassed; otherwise, it

is dropped.

Like SPI-based mechanisms, the above solution has sev-

eral drawbacks. For example, the complexity of storage and

computation make it infeasible to deploy in an ISP network.

Thus, a bitmap filter, which is a composite of k bloom fil-

ters [2] of equal size 2n-bit, denoted as a {k×n}-bitmap fil-

ter, is used instead. An example of a bitmap is illustrated in

Figure 3. Each column in the bitmap represents a bit-vector

of a bloom filter. For convenience, in the algorithm, the

bit-vector of the ith bloom filter is written as bit-vector [i].

H1(t)

H2(t)

Hm(t)

1 1 1 1

1 1 1 1

1 1 1 1

...

...

...

...

1 2 3 k...

2n

bits
n-bit

Figure 3. An example of a {k × n}-bitmap, the
core architecture for a bitmap filter.

First, the {k × n}-bitmap is initialized to zero, and

an index of the current bit vector idx is set to the first

bit-vector. All the bloom filters in the bitmap share the

same m hash functions, each of which should only out-

put an n-bit value. An output that exceeds n-bit should

be truncated. The bitmap filter comprises two algorithms,

the b.rotate algorithm, which clears expired bits from the

bitmap, and the b.filter algorithm, marks and looks up bits

in the bitmap. The algorithms are detailed in Algorithm 1
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and Algorithm 2, respectively. The b.rotate algorithm is

quite simple. The algorithm runs every time unit Δt. When

it is activated, the index of the current bit vector idx is set to

the next bit vector and all bits in the previous bit vector are

set to zero. For example, assume there are k bit vectors in a

bitmap filter indexed from {1, · · · , k}. If the current index

is set to the 1st bit vector, then the last bit vector will be

the kth bit-vector; however, if the current index is set to the

jth(1 < j ≤ k) bit vector, then the last bit vector will be

the (j − 1)th bit-vector.

Algorithm 1 The Timer Handler - b.rotate()
Require: An initialized {k × n}-bitmap and an index to

current bit vector idx.

1: last = idx
2: idx = (idx + 1) (mod k)

3: set all bits in bit-vector [last ] to zero

4: return idx

The bitmap is marked and looked up using the b.filter
algorithm, as shown in Algorithm 2. When a packet is

received by an edge router, the b.filter algorithm is ap-

plied to determine whether the packet should be bypassed

or dropped. For an outgoing packet, the b.filter iteratively

applies all the m hash functions on the tuple τout and marks

the corresponding bits in all bit vectors to a value of 1.

Outgoing packets are always bypassed. On the other hand,

when an incoming packet is received, the b.filter iteratively

applies all the hash functions on the tuple τ−1
in and checks if

the corresponding bit in the current bit vector indicated by

the index idx is marked or not. If a bit is not marked, then

the packet will be dropped.

Algorithm 2 The Filtering Function - b.filter()
Require: An initialized {k × n}-bitmap, an index of cur-

rent bit vector idx, and a packet pkt to be inspected.

1: if pkt is an output packet then
2: for h ∈ hash-function list do
3: j = h(τout)
4: mark the jth bit in all bit vectors as 1

5: end for
6: else if pkt is an input packet then
7: for h ∈ hash-function list do
8: j = h(τ−1

in )
9: if the jth bit in bit-vector [idx] is 0 then

10: return DROP

11: end if
12: end for
13: end if
14: return PASS

Note that the bitmap filter does not use all fields in the

address tuple τ to compute the hash value. Instead, for an

outgoing packet, it only hashes {source-address , source-

port , destination-address}. In contrast, for an incom-

ing packet, only {destination-address , destination-port ,

source-address} are used to compute the hash value. Fur-

ther details are given in Section 5.1.

In summary, the “mark” action is always performed for

all bit vectors, the “look up” and the “clean up” actions are

only performed for the current bit vector and the last bit

vector, respectively. The combination of these operations

achieves the same purpose as the naı̈ve solution described

at the beginning of this sub-section, which effectively filters

out unwanted traffic sent to a client network.

3.4 Choose Proper Parameters

As stated in Section 3.3, several parameters for the

bitmap filter must be decided. They are the k - the num-

ber of bit vectors in a bitmap, the n - the size of a bit vector,

the Δt - the time unit to clean up a bit vector, and the m -

the number of hash functions used in the bitmap filter. The

k and n parameters decide how much storage space is re-

quired for the bitmap filter; and the k and Δt parameters

decide the countdown time of the timer Te mentioned in

Section 3.2. Thus, given a moderate expiry timer Te and a

proper time unit Δt, the value k can be decided by � Te

Δt�.

Recall the result in Section 3.2. Te should not be too

long, since the port-reuse effect may incur more false nega-

tives. In other words, a packet that should be dropped may

be accepted by the filter. However, to prevent overkilling

connections with longer delays, Te should not be too short

either. A value below 60 seconds, such as 20 or 30 seconds,

would be acceptable. On the other hand, the time unit Δt
need not to be too short. Although a shorter Δt improves

the timer’s granularity, a Δt that is too short may raise the

frequency of running bitmap clean-ups too much and thus

reduce the overall performance of the system. A value of 4

or 5 seconds would be appropriate.

The n is a flexible parameter. An ISP can decide the

value according to the number of concurrently active con-

nections and the memory space that they are willing to de-

vote to the system. Note that a small n will also raise the

possibility of false negatives and reduce the effectiveness

of packet filtering. To avoid the problem, more hash func-

tions (i.e., m) may be used to reduce false negatives. When

deploying such a system, administrators should consider a

trade-off between storage space and computation power to

decide the value of n and m. We further evaluate the effects

of different sets of parameters in the next section.

4 Evaluations

In this section, we evaluate several aspects of the pro-

posed solution by analyses, comparisons, or simulations.
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4.1 False Positives and False Negatives

In our solution, the definition of a false positive is the

same as that used in generic intrusion detection mecha-

nisms. That is, an instance of normal behavior is detected

as an attack. In contrast, a false negative is an attack that

is treated as normal behavior. Since the bitmap filter works

in flavor of a positive listing, only incoming packets with

an out-in packet delay longer than the expiry timer Te are

filtered out. Thus, the number of false positives is very low.

As the result in Section 3.2 shows, false positives should be

lower than 1% when Te is greater than 2.8 seconds.

However, we should focus more on false negatives. As-

sume m hash functions are applied to a single incoming

packet and the utilization of the current bit vector is U =
b

2n , where b is the number of marked bits in a bit vector.

The probability p that a random incoming tuple τ will pen-

etrate the bitmap filter is

p = Um =
(

b

2n

)m

. (1)

The number of marked bits on the bit vector should be pro-

portional to the number of active connections c inside a time

unit of Te. If we assume that the results of the hash func-

tions seldom collide when the utilization of the bit vector is

low, Equation 1 can be rewritten as

p �
(c · m

2n

)m

. (2)

Given a bit vector size n and the expected max number of

active connections c, then to minimize the desired penetra-

tion probability p, we differentiate Equation 2 and get

p′ =
( c

2n
· m

)m (
1 + ln

( c

2n
· m

))
. (3)

Thus, m that minimizes the penetration probability p can be

obtained by solving 1 + ln( c
2n · m) = 0, which is

m =
e−1 · 2n

c
, (4)

where e is the base for the natural logarithm. By replacing

m in Equation 2 with e−1·2n

c when m minimizes the pene-

tration probability p, the ratio of the expected max number

of active connections c should satisfy

c

2n
≤ − 1

e ln p
. (5)

For example, if we adopt a bitmap filter of size n = 20
(about 1-million bits) with k = 4, and Δt = 5 seconds, and

set the desired penetration probability to be roughly 10%,

5%, and 1%, the number of active connections inside a time

unit Te = 20 seconds should be less than 167K, 125K, and

83K, respectively. Compared with our trace data, which has

only average 15K active connections inside a time unit of 20

seconds, these upper bounds are much higher than the actual

traffic. The number of used hash functions m in the setup

can be 3, and the memory space required by the bitmap filter

is only (k × 2n)/8 = 512K bytes.

4.2 Performance

The bitmap filter is efficient because almost all opera-

tions can be performed in constant time. The processing

time for an outgoing packet is O(m × th) + O(k × tm),
where m is the number of used hash functions, th is the

time taken to execute a hash function, k is the number of

bit vectors to be marked, and tm is the processing time to

mark a bit. Since hash functions can be implemented as

a dedicated hardware chip, the processing time is negligi-

ble. Thus, the outgoing packet process can be treated as

a constant time operation. Processing incoming packets is

simpler than for outgoing packets. The required process-

ing time is O(m × th) + O(tc) where tc is the processing

time need to check whether a bit on a bit vector is marked

or not. Incoming packet processing is also a constant time

operation.

The most time consuming operation may be the b.rotate
algorithm, which executes every Δt seconds. The algo-

rithm first advances the current index idx to set to the next

bit vector, and then resets all bits in the last bit vector to

zero. Thus, the operation is proportional to the size of a

bit vector, which is O(n). However, since the memory

space of a bit vector is fixed and continuous, implement-

ing such an algorithm in software or hardware should be

very simple and efficient. We also compare the performance

of the bitmap filter and SPI based-implementations. In Ta-

ble 1, the “hash+link-list” implementation is the method

used in the popular open-source Linux operating system.

The “AVL-tree” is an implementation that efficiently re-

duces the time complexity searching flow states. Our so-

lution is listed in the column labelled “bitmap filter”.

4.3 Simulation with the Packet Trace

We also perform several simulations to verify the effec-

tiveness of the bitmap filter. A bitmap filter and an SPI-

based packet filter are both implemented. The input to both

filters is the packet trace used in Section 3.2. First, we com-

pare the packet drop rate of the filters. The SPI filter is

set to delete idle connections after 240 seconds, which is

the default TIME WAIT timeout used in the Microsoft win-

dows operating system [12]. The bitmap filter is config-

ured as follows: n = 20, k = 4, Te = 20, and Δt = 5.

This constructs a 512K-byte bitmap filter that handles the

out-in packet latency shorter than 20 seconds. As Figure 4
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Table 1. Performance comparison of the bitmap filter and SPI-based filters.
Hash + link-list

(Linux)
AVL-tree Bitmap filter

Storage space -

Complexity.

O(n) O(n) O(n)(a)

Storage space -

Handle maxima 2.56M concurrent

connections.

76.8M bytes (b) 76.8M bytes (b) 8M bytes (c)

Computation complexity -

Insert a new state.

O(1) O(log n) O(1)

Computation complexity -

Lookup an existing state.

O(n) O(log n) O(1)

Computation complexity -

Garbage collection (d).
O(n)(e) O(n)(e) O(n)(f )

Hardware acceleration Possible Difficult Easy

(a) Although the complexity of storage space is also O(n), the required memory space of the bitmap filter is much smaller than other implementations when handling the same

number of active connections. (b) The size of a flow state is set at 30 bytes, including source address, source port, destination address, destination port, connection state, timestamp,

and pointers to maintain the list or tree data structure. (c) The random packet penetration rate is set at about 10%. (d) The purpose of garbage collection is to remove expired flow

states. (e) The garbage collector has to traverse all states kept in the memory. (f) The garbage collector only resets values in a fixed-size and continuous memory to zero.

shows, the filters have similar packet drop rates, and the

gray-dashed line has a slope of 1.0. The SPI filter has an av-

erage drop rate of 1.56% compared to 1.51% for the bitmap

filter. This is because that the SPI filter knows the exact

time of closed connections and can therefore drop packets

precisely than the bitmap filter.
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Figure 4. Comparison of the packet drop
rates of the SPI and the bitmap filters. The
gray-dashed line has a slope of 1.0.

We also test the filtering rate of the bitmap filter.

In this simulation, an attack generator releases incom-

ing attack packets with address tuples in the form of

{saddr , sport , daddr , dport}, where saddr , sport , and

dport are chosen at random; however, daddr is confined

to the address space of the given sub-networks. The ran-

dom attack packets are generated at the rate of 500K pack-

ets per second, which is about 20 times faster than the nor-

mal traffic packet rate in the trace data. The attack traffic

is mixed with the normal packet trace and then fed to the

bitmap filter. To prove the effectiveness of the bitmap fil-

ter, each attack packet is verified whether it penetrates the

bitmap filter or not. The result of the test is shown in Fig-

ure 5. The attack begins at the 10800th second. In Fig-

ure 5-a, the black line represents the number of packets that

penetrates the bitmap filter. The light-gray area indicates the

number of normal packets, while the dark-gray area shows

the number of attack packets. We can see that the amount

of penetrated traffic is similar to normal traffic as the black

line fits the border of the light-gray area. Figure 5-b shows

the filter rate of attack packets. In our simulation, almost all

attack packets (99.983% on average) are filtered out. The

result thus shows that the 512K bytes {4×20}-bitmap filter

with 3 hash functions can effectively filter out attacks for

the small- or medium-scale client networks.

5 Discussion

In this section, we discuss several issues related to the

bitmap filter, including the bitmap filter’s compatibility with

existing Internet protocols, possible attacks on the bitmap
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Figure 5. The performance of the bitmap filter
for the mixed attack and normal traffic.

filter, and design issues.

5.1 Compatibility

The bitmap filter is completely compatible with all client

initiated Internet protocols, including the hyper-text transfer

protocol (HTTP), the e-mail transmitting/receiving proto-

cols (SMTP, POP3, IMAP), the file transfer protocol (FTP)

using passive mode, the telnet protocol, and the secure shell

(SSH) protocol. Note that use of the bitmap filter does

not require modification of existing network infrastructure.

However, since the filter drops all active requests sent to the

client network, some protocols that separate the command

and the data channel may be problematic. Protocols like the

active mode FTP or peer-to-peer protocols, will fail when

another data communication channel that initiates outside

the client network is required.

To solve the problem, these applications cat adopt the

hole punching technique. That is, when a client requires

active connections initiated by an outsider, it first sends out

a packet to mark related bits in the bitmap filter. The remote

peer can then reach the client inside the protected network.

Take the active mode FTP as an example, and assume that

a client c needs the server s to transfer data to a port p. The

client can send a TCP or UDP packet with the address tuple

{c, p, s, x}, where x is a random port number, to the server.

Then, the server is allowed to actively connect to the port

p of the client before the marked corresponding bits on the

bitmap filter expire.

Since a client always establishes a command channel

with outsiders before creating more data channels, most

protocols that require extra data channels should be able to

function properly with the hole punching technique. Net-

work administrators may also consider the solution de-

scribed in Section 5.3 if the purpose of deploying the bitmap

filter is only to mitigate bandwidth attacks against client net-

works.

5.2 Attack from Insiders

The bitmap filter may fail when an internal user are at-

tacking outsiders. Suppose that a client host is infected with

worms. When the client transmits a large volume of ran-

dom traffic to other networks, the bitmap filter will be filled

with the malicious traffic, which would increase the random

packet penetration rate. Given an attack rate r, the increased

bitmap utilization U will be roughly m·r·Te

2n . To prevent

such attacks, we can use a larger bitmap (by increasing n)

or shorten the expiry timer Te. As the results in Section 3.2

show, it may be safe to reduce the Te to around 3 or 5 sec-

onds because 99% of out-in packet delay is relatively short.

However, since there are limitations on both n and Te,

the bitmap filter may ultimately be compromised by the out-
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going attacks if the number of attackers inside the client

network continues to increase. The best way to avoid the

problem is to find the attacking hosts and eliminate attack-

ers inside the client network. The design of the bitmap filter

is based on the principle of fairness. That is, a network will

not be attacked if it does not attack other networks.

5.3 Adaptive Packet Dropping

If the sole purpose of deploying a bitmap filter is to miti-

gate bandwidth attacks against client networks, the adminis-

trator may consider using adaptive packet dropping (APD),

instead of dropping all unmatched incoming packets. An

APD-enabled bitmap filter uses one or more indicators to

decide whether a “should-be-dropped” packet will be ac-

tually dropped. Two adaptive packet dropping designs are

shown as follows. The first takes bandwidth utilization as

the indicator:

1. The edge router monitors the bandwidth utilization Ub

(0 ≤ Ub ≤ 1) of given links.

2. The bitmap filter runs as usual: it decides to pass or

drop a packet.

3. When a packet is to be dropped, the edge router drops

it with a probability of Ub.

The second design takes the ratio of incoming packets ver-

sus outgoing packets as the indicator:

1. The edge router monitors the incoming packet count

Pin and outgoing packet count Pout of given links.

2. The bitmap filter runs as usual: it decides to pass or

drop a packet.

3. Given two thresholds l, h (l < h), and an indicator

r = Pin

Pout
, when a decision is made to drop a packet,

the edge router drops it with a probability of

p =

⎧⎨
⎩

0 , if r < l
r−l
h−l , l ≤ r ≤ h

1 , if r ≥ h

Note that when adaptive packet dropping is enabled for in-

coming packets, the packet marking policy of the bitmap fil-

ter must be modified. In a non-APD-enabled bitmap filter,

all outgoing TCP and UDP packets are considered in order

to mark corresponding bits in the bitmap. However, for an

APD-enabled bitmap filter, the outgoing packets are clas-

sified as signal packets and data packets. Outgoing UDP

and TCP data packets without SYN, FIN, or RST flags,

are still used for marking bit vectors. However, outgoing

TCP signal packets with SYN+ACK, FIN+ACK, RST, or

RST+ACK flags, are not used to mark bit vectors. An ex-

ception is that when a signal packet only takes SYN or FIN

flag, it is used to mark the corresponding bits in the bitmap

filter. This is because an APD-enabled bitmap filter may

admit all incoming packets when the dropping probability

is low. In such a condition, the bitmap filter should only
keep those connections that are really connected. For at-

tacks like SYN-scanning or FIN-scanning, which cause the

target host to return SYN+ACK, FIN+ACK, or RST, mark-

ing the bitmap filter carefully can avoid a rapid increase in

the number of false negatives caused by attacks that reduce

the efficiency of the bitmap filter.

5.4 Colluding with Attackers

To effectively attack a client network protected by the

bitmap filter, attackers have to “guess” the connections with

hosts in the network. An attacker may consider installing

sniffers on clients inside the network or at peers connected

to the client network. Obviously, identifying connections at

peers is not efficient, since a client network’s connections

are diverse. Besides, aggregates are easy to find and rate-

limit if the number of monitored connected peers is not very

large.

Although it may be possible to identify the connection

states of client hosts inside a client network, it may not help

a potential attacker. First, in a switching environment, it is

hard for a client to capture traffic from other hosts. Thus,

the client can only report its own connection states to at-

tackers. Since these connection states also form aggregates

to identify sniffers, they can be blocked easily. In addition,

if a sniffer can capture traffic from all clients and report con-

nection states to attackers, short connections will be deleted

quickly from a bitmap filter with a short expiry timer Te.

In such a situation, the sniffer has to report new states to

attackers frequently, which increases the risk of the sniffers

and attackers being identified. Thus, colluding with attack-

ers may be not a suitable strategy to attack the bitmap filter.

6 Conclusions

A client host that connects to the Internet will always re-

ceive random attack traffic whether it is vulnerable or not.

With the rapid development of telecommunication tech-

nologies and hand-held mobile devices, new Internet clients

also receive massive amounts of random attack traffic. To

filter out such traffic, we propose a bitmap filter, which stops

most malicious traffic. Our analyses and simulations show

that with a small amount of resources and proper configura-

tion, an ISP can efficiently filter out 90% to 99% of attack

traffic for client networks.
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