
Bot Detection in Rhythm Games:
A Physiological Approach

Ruei-Min Lin1, Hwai-Chung Ho2, and Kuan-Ta Chen1∗

1Institute of Information Science, Academia Sinica
2Institute of Statistical Science, Academia Sinica

ABSTRACT
As the online game industry expands, detecting and prevent-
ing cheating in games is an increasingly important research
topic. Some forms of cheating, such as the use of game bots
(auto-playing game clients), are particularly challenging to
identify because game bots do not violate any of the game
rules; rather, they simply mimic human behavior to play the
game without human intervention. The use of bots intro-
duces fairness issues to online games, and therefore robust
schemes for detecting game bots are strongly demanded.
In this paper, we tackle with bots in rhythm games, which

feature gameplay that incorporates eye and body coordi-
nation with music, usually a popular song. Bot detection
in rhythm games is especially challenging compared with
in other game genres because little information is available
to distinguish the responses made by a human player from
a bot. Based on the long-memoryness of the time series
formed by human players’ response errors to stimuli, we pro-
pose a scheme to detect the presence of human coordination
mechanisms during gameplay. Based on a set of traces col-
lected from human players and real-life game bots, we show
that our scheme can accurately detect the use of game bots
despite of game difficulty levels.

Categories and Subject Descriptors
H.1.2 [Models and Principles]: User/Machine Systems—
Human factors; K.8.0 [Personal Computing]: General—
Games

General Terms
Human Factors, Management, Security

Keywords
Game bots, Game cheating, Dancing games, Long-memory
process, Long-range dependence, Human coordination

∗Corresponding Author. Contact: ktchen@iis.sincia.edu.tw

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Short presentation, ACE’2011 - Lisbon, Portugal
Copyright 2011 ACM 978-1-4503-0827-4/11/11 ...$5.00.

1. INTRODUCTION
In recent years, online gaming has become an important

Internet activity. However, the growth of online games is
accompanied by serious cheating problems [12], where one
of the greatest threats that online games face today is the
widespread use of game bots [2]. A game bot is a gen-
eral name for describing a mechanism that can help play-
ers perform routine tasks and enhance players’ performance.
For instance, in MMORPGs (Massively Multi-player Online
Role Player Games), players must kill monsters repeatedly
to earn virtual reward and items. Bots can perform such
tasks automatically without the attendance of humans. As a
result, a player can save much time by using bots, while hon-
est players must undergo significant efforts repeating such
tasks manually. Similarly, in FPS (First Person Shooting)
games, honest players need to manually aim and shoot their
enemies with guns, while bot users can use bots to target en-
emies automatically and win games easily [3,9]. Likewise, in
rhythm games, players have to synchronize their responses
(e.g., to hit a specific key) with music, while bots can be
used to automatically respond according to the rhythm and
achieve a perfect timing. Such uses of game bots cause un-
fairness in the game world—bot users tend to be more re-
sourceful and powerful than honest players, which makes the
latter unhappy and even becomes one of the major reasons
of players’ quit from a game. Given all these reasons, de-
tecting the use of game bots is a critical and demanding task
of online game operators.

Generally, there are two common approaches to prevent
and/or detect the use of bots: HIPs (Human Interactive
Proofs) and HOPs (Human Observational Proofs). HIPs
ask players some questions that can be answered easily by
humans but difficult for bots. For example, Golle et al. [6]
suggested to detect bots by using CAPTCHAs (Completely
Automated Public Turing test to tell Computers and Hu-
mans Apart), a challenge-response test which ensures that
the response is given by a person. However, HIPs have two
disadvantages when applied to bot detection. First, HIPs
interrupt a player’s game experience by querying questions.
Second, HIPs can only prove that a human is present, but
cannot determine if a game bot is actually used. In the case
of rhythm games, it is common that bot users stay in front
of the computers to watch the bot’s gameplay. As a result,
HIPs are not effective for detecting bot use in rhythm games.

On the other hand, HOPs observe and analyze players’
behavior statistically to decide if the behavior is performed
by human or bots. For example, Thawonmas et al. [11] iden-
tified MMORPG bots by analyzing the type and frequency

Figure 1: A screen shot of Guitar Hero

of player actions. Since HOPs do not interrupt gameplay
and are capable of detecting bots no matter humans are
present or not, we consider HOPs more competent than
HIPs to detect rhythm game bots. However, since a player’s
behavior may vary, the great challenge would be how to
build a robust player behavior model independent of time
and various confounding factors such as music types.
In this paper, we proposes a HOP method to detect bots

in rhythm games based on the long-range dependence in hu-
man coordination [4]. Specifically, when humans are asked
to respond to periodic stimuli, it is shown that the time se-
ries formed by the error between the stimulus and human
response would involuntarily form a long-memory process.
We show that humans tend to exhibit the aforementioned
behavior when playing rhythm games, as the rule in such
games is very similar—it requires the players to respond to
semi-periodic stimuli. Based on this finding, we propose a
scheme that relies on the long-range dependence character-
istics in human coordination behavior to detect whether a
game bot is in use. Through a series of experiments, we show
that our scheme can accurately discriminate game bots from
human players. To the best of our knowledge, this work is
the first to detect the use of game bots for rhythm games.
The remainder of this paper is organized as follows. We

review related works in Section 2 and provide a brief in-
troduction of rhythm games and long memory processes in
Section 3. We conduct a pilot study, as described in Sec-
tion 4, to validate the long memory characteristics of human
response errors in rhythm games and consequently present
our scheme in Section 5. Finally, we present the perfor-
mance evaluation of our methodology in Section 6 and draw
our conclusions in Section 7.

2. RELATED WORK
Game developers and operators have been eager to fight

against game bots to maintain the fairness among players
in a game. In this section, we review previous attempts to
tackle this problem.
A common approach for preventing bots is to use CAPT-

CHA tests [6]. However, as we discuss in Section 1, this
approach is not appropriate for rhythm games because ad-
ministering such tests would interrupt gameplay and the
tests can ensure only the presence rather than gameplay of
humans. The HOP approach for game bot detection mostly
relies on statistical behavioral modeling of human players
and/or game bots. For example, Chen et al. [2] proposed
to identify standalone MMORPG bots by analyzing net-
work traffic patterns, whereas the traffic generated game
bots tend to contain a certain degree of regularity. A num-
ber of researches proposed to detect game bots based on

Figure 2: A screen shot of Gitaroo Man

players’ behavior from different aspects, such as item trad-
ing behavior [11], how the input devices (e.g., mouse and
keyboard) are controlled [5], the avatars’ moving trajectory
over time [8, 9], and so on.

Unfortunately, all the previous proposals cannot be ap-
plied to rhythm games because the rule and control in this
type of games are very simple and thus no much informa-
tion can be utilized to develop sophisticated statistical mod-
els for distinguishing bots and human players. Specifically,
compared to other game genres, there is only one action
(e.g., dancing) for game avatars and only one type of control
(e.g., hitting an arrow key) required from players. Thus, the
only information available for discriminating bots and hu-
man players are the correctness and the timing of the arrow
key events.

3. BACKGROUND
In this section, we first introduce rhythm games and their

relationship with game bots; we then give a recap of long
memory processes and how the long-memoryness of a time
series is determined.

3.1 Rhythm Games
Rhythm games feature gameplay that incorporates eye

and body coordination with music, usually a popular song.
To score well, a player must translate visual and auditory
cues into actions and perform them at appropriate time and
in rhythm. Themed experiences through custom hardware
controllers, such as dancing on a game pad or playing a
guitar shaped controller, are popular as well.

Early on, icons streaming across the screen in a timeline
fashion were used to indicate the time of a joystick tilt or a
button press, including Rock Band, Guitar Hero (Figure 1),
and Dance Dance Revolution. Rather than on a timeline,
another style of rhythm games arranges the icons radially
around the screen, where icons emerge from the middle of
the screen and project outward with different angles. Game-
play of rhythm games sometimes involves an analog thumb
stick. Notable examples in this category are Gitaroo Man
(Figure 2) and EyeToy: Groove. Moreover, a new form
of rhythm gameplay evolved incorporating the absolute po-
sition of the Nintendo DS touch screen. In the Japanese
game Osu! Tatakae! Ouendan (Figure 3), players must tap
circles, which move along a trace line, in the correct order
with correct timings according to the rhythm. In brief, the
essence of rhythm gameplay is that the players strive to syn-

Figure 3: A screen shot of Osu! Tatakae! Ouendan

chronize their responses to stimuli at the right timing and
that the smaller the timing and positioning errors between
the responses and stimuli, the higher score a player would
achieve.

Bots in Rhythm Games
In rhythm games, players usually compete with each other
by achieving higher scores/ranks or collecting more valuable
virtual items. Achieving such goals require players to contin-
uously deliver outstanding performance in gameplay, which
is challenging and requires numerous practice and efforts.
Therefore, dishonest players may use bots to play games for
them, where the bots automatically respond according to
the stimuli and the rhythm. The use of game bots certainly
annoys honest players because the latter may be more skill-
ful and spend much more time, but rank lower than bot
users. Furthermore, developing bots for rhythm games is
relatively easier and less troublesome than developing bots
for games of other genres, as stimuli and controls are partic-
ularly simple. Therefore, the use of bots are now prevalent
in rhythm games and the detection of such unlawful behav-
ior is strongly demanded.
However, detecting the use of bots in rhythm games is par-

ticularly difficult due to two reasons. First, rhythm game
players tend to be present when they use bots to play the
game, as they can interact with other players during game-
play. Second, unlike other game genres, the stimuli from
the game are low-dimensional as they comprise only direc-
tion and time information. In other words, there is little
information available to discriminate the responses made by
a human player, especially an experienced player, from a
game bot.

3.2 Long Memory Process
Our proposed scheme for bot detection is based on an

observation that the time differences between a human’s re-
sponses to a periodic stimulus tend to form a long memory
process [4]. In this section, we provide a short recap of the
long memory process, including the definition of long mem-
ory processes and the estimation of the Hurst index, which
can be used to determine whether a time series is a long
memory process or not.
Below we recap the mathematical definition of long mem-

ory processes [1]. Let Xt be a stationary process for which
there exists a real number α ∈ (0, 1) and a constant cρ > 0

such that

lim
k→∞

ρ(k)/[cρk
−(1−α)] = 1, (1)

where ρ(k) denotes the auto-correlations of Xt at lag k, then
Xt is called a stationary process with long memory or long
range dependence.

To explain plainly, a long memory process is a process
with a random component, where a past event has a decay-
ing effect on future events. The process has some memory
of past events, which is gradually forgotten as time moves
forward.

Hurst Index
The Hurst index [7], commonly denoted as H, is an im-
portant indictor of the long memory property of a time se-
ries. H measures the relative tendency of a time series ei-
ther to regress strongly to the mean or to cluster towards
a direction. A value of 0 < H < 0.5 indicates a time
series with a negative autocorrelation (i.e., a decrease be-
tween values will probably be followed by an increase). A
value of 0.5 < H < 1 indicates a time series with a “long-
term” positive autocorrelation (i.e., an increase between val-
ues will probably be followed by another increase). A value
of H = 0.5 indicates a process of white noise, where it is
equally likely that a decrease or an increase will follow any
particular value. That is, a time series has no memory of
previous values if its Hurst index is 0.5.

There are quite a few methods available for estimating the
Hurst index of a time series [1]. We use the following two
common approaches for Hurst index estimation:

1. Spectrum: Given a time series ei and its spectral
density function S(f). If ei is a long memory process,
the spectral density function will follow a power law,
i.e., S(f) ∼ f−α, where α is in the range of (0, 1).
We can therefore estimate H based on α using the
equation H = (1 + α)/2.

2. R/S plot: Given a time series ei, L(n, s) = Σi=s
i=1en+i

can be regarded as the position of a random walk after
s steps, and R(n, s) = max{L(n, p)− p ·L(n, s)/s, 1 ≤
p ≤ s}−min{L(n, p)− p ·L(n, s)/s, 1 ≤ p ≤ s} can be
regarded as the trend-corrected range of the random
walk. Moreover, S2(n, s) denotes the sample variance
of the data set {en+i}i=s

i=1. Assuming Q(s) the average
re-scaled statistic Q(s) = 〈R(n, s)/S(n, s)〉n, we can
plot s versus Q(s) in a logarithmic scale and estimate
the Hurst index as the slope of the linear regression
model log(Q(s)) ∼ log(s).

As a demonstration, assuming that we are to estimate the
Hurst index of the time series in Figure 4(a). According to
the spectrum method, we plot the spectral density function
of the time series in Figure 4(b), and estimate its Hurst index
as (1 + 0.69)/2 = 0.84. By using the R/S plot approach, we
estimate the Hurst index of the time series as 0.72, as shown
in Figure 4(d).

4. PILOT STUDY
In the experiments conducted by Chen et al. [4], subjects

are asked to synchronize their limb movements to periodic
stimuli. Because of the internal mechanisms of human co-
ordination, the time series formed by the errors between
the subjects’ responses (i.e., movements) and the stimuli

0 200 400 600 800 1000
−

10
0

−
50

0
50

Tap number i

E
rr

or
 (

m
s)

(a) The response error time series

200 300 400 500 600 700 8000.
00

00
0.

00
10

0.
00

20
0.

00
30

Interresponse intervals (second)

D
en

si
ty

(b) Density function of inter-response
intervals

0.001 0.005 0.020 0.100 0.5001e
−

07
1e
−

05
1e
−

03

f (Hz)

P
ow

er
 S

(f
)

slope = −0.69

(c) Spectral density function of the re-
sponse error series

20 50 100 200 500 1000

5
10

20
50

10
0

s
Q

(s
)

Slope = 0.72

(d) R/S plot of the response error series

Figure 4: An exemplar trace from the monotonic stimulus pilot study

are shown to be long memory processes by estimating their
Hurst indexes. For brevity, we shall call the time series
formed by the timing errors between a subject’s responses
to stimuli the “response error time series” or simply the “re-
sponse error series.”
In this section, we conduct two pilot studies in order to

validate whether the long-range dependence characteristics
in human coordination can be generalized to rhythm games.
Generally, the gameplay of rhythm games is similar to the
experiment settings in [4]; however, a few differences exist:
1) The stimuli in rhythm games are not fully periodic, rather
they are multiples of a base frequency. For example, if the
base frequency is 16 Hz (equivalent to a period of 62.5 ms),
the periods between two stimulus can be 62.5 ms, 125 ms,
187.5 ms, 250 ms, and so on. 2) Rhythm games are deco-
rated by dazzling images and background music, which may
affect how players coordinate their key press actions in re-
sponse to stimuli. To confirm whether the response error
series still exhibits the long memory property, we conduct
two studies, the first with monotonic (i.e., periodic) stim-
uli, and the second with harmonic (i.e., the frequencies of
stimuli are multiples of a base frequency) stimuli, and inves-
tigate whether the long-memory property still holds in these
conditions.

4.1 Monotonic Stimulus Experiment
Our monotonic stimulus experiment is exactly the repro-

duction the experiment conducted in [4]. In this study, the
subjects are prompted to click the SPACE key whenever
they hear a crisp sound signal that is triggered every 500
ms. Each experiment lasts 10 minutes and comprises 1, 200
signals and ideally 1, 200 responses if the subjects respond
correctly. We record the occurrence times of each stimu-
lus (sound signal) and a subject’s response (key press) and

consequently compute the response error time series by the
differences between stimuli and responses.

We plot the results from one of the experiments in Fig-
ure 4. The response error time series is shown in Figure 4(a),
while it can be seen from Figure 4(b) that the stimuli are
triggered every 500 ms as the inter-response times concen-
trate around 500 ms. Interestingly, both graphs indicate
that the average response error is slightly below zero, which
implies that humans tend to “respond” to periodic stim-
uli based on their internal coordination mechanisms rather
than completely relying on the external stimuli. This phe-
nomenon can be considered an evidence of human coordi-
nation mechanisms in work. We estimate the Hurst index
of the response error series by using the two methods in-
troduced in Section 3.2. The Hurst indexes estimated are
(1 + 0.69)/2 = 0.84 (Figure 4(c)) and 0.72 (Figure 4(d)) re-
spectively. In either case, the Hurst index is in the range of
0.5 < H < 1.0, which indicates that the response error se-
ries is a long memory process and reconfirms the observation
made by [4].

4.2 Harmonic Stimulus Experiment
Having confirmed the long memory property using mono-

tonic stimulus experiments, we relax the periodicity require-
ment of the stimuli in order to match the gameplay of rhythm
games and conduct harmonic stimulus experiment. In this
study, the stimuli are not triggered in a fully periodic man-
ner; instead, they are triggered with a random inter-stimuli
period, which can be 250 ms, 500 ms, or 1000 ms. In ad-
dition, we mimic rhythm games by providing visual cues in
addition to auditory cues. The visual cues are presented
as icons moving along a horizontal band; whenever an icon
reaches a designated area, the sound signal is simultaneously
triggered to prompt the subjects to respond.

We plot the results from one of the harmonic stimulus
experiments in Figure 5. The response error time series is
shown in Figure 5(a), and the density function of the inter-
response intervals are depicted in Figure 5(b), which mani-
fests that the three periods, 250 ms, 500 ms, and 1000 ms,
occur with approximately equal probabilities. We estimate
the Hurst index of the response error series by using the
spectrum approach as (1 + 0.34)/2 = 0.67, as shown in Fig-
ure 5(c); also, we estimate the Hurst index as 0.82 based on
the R/S plot, as shown in Figure 5(d). Both Hurst index
estimations indicate that the response error series is a long
memory process. Therefore, we can confirm that, even with
harmonic stimuli and visual cues, the long memory property
of response error series still holds. This phenomenon will
serve the basis of our scheme for detecting bots in rhythm
games.

5. PROPOSED SCHEME
In this section, we propose our scheme for detecting bots

in rhythm games. To detect the bots, we collect the informa-
tion about stimuli and a player’s corresponding responses,
and determine whether the “player” is a human or a bot
based on whether the response error series is a long memory
process. In the following, we first discuss the derivation of
the response error series and then present the classifier for
bot identification.
In a rhythm game, players are prompted with harmonic

stimuli (using visual and auditory cues) which are normally
associated with different types of responses. For example,
a common design is to have four types of stimuli that cor-
respond to the four orthogonal directions, up, right, down,
and left, respectively, while players are expected to hit the
corresponding arrow key when a stimulus is present. The
four-direction setting can be augmented by including four
diagonal directions and forms an eight-direction setting to
increase the variety and also the difficulty of the games.
Assuming that the i-th stimulus of type c(si) was trig-

gered at time t(si), the j-th response of type c(pj) was made
by a player at time t(pj), the response error associated with
the j-th response, pj , is computed by ej = t(pj)− t(si) that
satisfies

i = argmin
k∈[1,n]∧c(pk)=c(sk)

|t(pk)− t(sk)| , (2)

where n is the number of stimuli we observed in a game
session. By so doing, we can collect the response error series
{ei}i=N

i=1 .
Based on the observation in Section 3.2, for a recorded

game session, our game bot detection method comprises
three steps:

1. Compute the response error time series {ei}.
2. Estimate the Hurst index by using both the spectrum

method and the R/S plot method.
3. If both of the estimated Hurst indexes indicate that

{ei} possesses the long memory property, we consider
that the game session was played by a human; other-
wise, it was played by a game bot.

6. PERFORMANCE EVALUATION
In this section, we evaluate whether the Hurst index of

a response error series is feasible to be a robust indicator
of human gameplay. We begin by introducing the studied

Figure 6: A screen shot of Dancing Online

game, Dancing Online, and then present how we collect the
data from the game. We then perform a preliminary analysis
of the collected traces, and finally investigate the overall
discrimination performance of the proposed scheme.

6.1 Studied Game
Our performance evaluation was based on a popular rhythm

game in Asia, Dancing Online1. Dancing Online provides a
variety of gameplay modes, including the normal mode, beat
mode, rotation mode, and so on. We chose the beat mode
for data collection because it is the most popular mode in
the game. In this mode, a stimulus which can be in one of
the four directions moves along a band from left to right,
as shown in Figure 6. When a stimulus reaches the target
area (the lightened area at the right side of the screen), the
player needs to hit the corresponding arrow key to score
points. The smaller the timing difference between the time
the stimulus reaches the target area and the time the arrow
key is hit, the higher score is obtained.

We chose Dancing Online for study due to three reasons.
First, it is a popular game that there are normally thousands
of players online at any time. The large player population
makes it a good candidate for testing our methodology in
real life. Second, Dancing Online is a typical rhythm game
with a number of variations in gameplay, which allows us to
evaluate the effect of human coordination when more con-
founding factors are put into play. Third, game bots de-
signed for Dancing Online are easily accessible; therefore,
we can validate the effectiveness of our methodology using
real-life game bots, rather than using home-grown bots that
may not be realistic.

6.2 Bots for Dancing Online
So far (as of Sep 2011), the most popular bot for Dancing

Online is called Dancing King. Dancing King is a stan-
dalone program which monitors the game screen and em-
ulates key presses whenever appropriate. Because players
whose performance is “too good” tend to be suspected by
other players and game operators, Dancing King supports
an anti-detection mechanism which purposely makes error
by tuning a value called ADV (Anti-Detection Value). With
this mechanism enabled, Dancing King does not always re-
spond perfectly; instead, they may make timing errors in a
probabilistic way. Because of the anti-detection mechanism,

1http://www.gamespot.com/pc/puzzle/dance/

0 200 400 600 800 1000
−

50
0

50
10

0
15

0
Tap number i

E
rr

or
 (

m
s)

(a) The response error time series

0 200 400 600 800 1000 12000.
00

00
0.

00
10

0.
00

20

Interresponse intervals (second)

D
en

si
ty

(b) Density function of inter-response
intervals

0.001 0.005 0.020 0.100 0.5005e
−

06
5e
−

05
5e
−

04
5e
−

03

f (Hz)

P
ow

er
 S

(f
)

slope = −0.34

(c) Spectral density function of the re-
sponse error series

20 50 100 200 500 1000

5
10

20
50

10
0

s
Q

(s
)

Slope = 0.84

(d) R/S plot of the response error series

Figure 5: An exemplar trace from the harmonic stimulus pilot study

it becomes harder for a game operator to confirm whether
a player is using Dancing King to cheat or not.

6.3 Data Collection
Dancing Online is a close-sourced, proprietary, commer-

cial game which does not support any form of built-in trace
collection facility. To record the information of stimuli and
players’ responses, we utilize the hooking mechanism2 in
Windows to inject our instrumentation code into the Danc-
ing Online client. We use the detours library to intercept
the IDirect3dDevice9::EndScene() function, which is called
when a Direct3D application finishes drawing graphics on a
hidden surface and is about to present the surface on the
screen. By analyzing the screen content, we continuously
record the stimulus type, c(si), on the screen and the time
it arrives at the target area, t(si), for the i-th stimulus. In
addition, we intercept the window procedure of the main
window of Dancing Online, which is called whenever a win-
dow message is sent to the main window and about to be
processed. By examining the window messages, we record
the type and timing of each arrow key press event made by
the player as c(pi) and t(pi) for the i-th response. Because
our injection approach is general, it can be applied to other
rhythm games easily without much modification.
We hired 11 gamers with different levels of experience in

Dancing Online to play the game with our data logging fa-
cility enabled. Also, we used the bot program Dancing King

to play Dancing Online and recorded its gameplay behav-
ior. In a total, we have collected 466 samples from 11 hu-
man players and 172 samples from the bot. Each sample
comprises the title of the song, the game difficulty level,

2The Windows hooking mechanism is invoked by calling the
SetWindowsHookEx function. It is frequently used to inject
code into other processes.

and four time series, namely, {t(si)}, {c(si)}, {t(pi)}, and
{c(pi)}, which are used to calculate {ei} according to the
procedure in Section 5. The game difficulty can be one of
the four levels, Easy, Medium, Advanced, and Hardcore.

6.4 Data Inspection
In this subsection, we analyze the traces collected during

gameplay to inspect the behavioral differences between hu-
man players and bots. Firstly, we plot the response error
time series of a human gameplay sample and its associated
graphs in Figure 7. The response error series shown in Fig-
ure 7(a) validates our observation in Section 4 that players
tend to respond earlier than the time prompted. Figure 7(b)
depicts the density function of the inter-response intervals,
which indicates that the stimuli are not periodic but concen-
trate around several values. Using the spectrum method, we
estimate the Hurst index as (1 + 0.4)/2 = 0.7, as shown in
Figure 7(c); in addition, the Hurst index estimated using
the R/S plot method is 0.84, as shown in Figure 7(d). Both
estimators strongly indicate the long memory property of
the response error series and support our argument about
the human coordination behavior in rhythm games.

As a comparison, we also plot the response error time se-
ries of a bot gameplay sample and its associated graphs in
Figure 8. From Figure 8(a), we can see that the response
errors generated by bots are more like white noises rather
than human coordination errors that exhibit certain pat-
terns, such as the premature response behavior. The Hurst
indexes estimated are (1 − 0.16)/2 = 0.42 and 0.46 accord-
ing to the spectrum method (Figure 8(c)) and the R/S plot
method (Figure 8(d)) respectively. Both estimators indicate
that the response error series generated by bots is not a long
memory process, because a bot does not have complex co-
ordination mechanisms like humans which cause long-range

0 50 100 150 200 250 300 350

−
10

0
−

50
0

50
10

0

Tap number i

E
rr

or
 (

m
s)

(a) The response error time series

0 1 2 3 4

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Interresponse intervals (second)

D
en

si
ty

(b) Density function of inter-response
intervals

0.005 0.020 0.050 0.200 0.500

2e
−

05
1e
−

04
5e
−

04
5e
−

03

f (Hz)

P
ow

er
 S

(f
)

slope = −0.36

(c) Spectral density function of the re-
sponse error series

20 50 100 200
5

10
20

50
s

Q
(s

)
Slope = 0.98

(d) R/S plot of the response error series

Figure 7: An exemplar human player trace collected from Dancing Online

0 50 100 150 200 250

−
20

−
10

0
10

20

Tap number i

E
rr

or
 (

m
s)

(a) The response error time series

0 1 2 3 4

0.
0

0.
5

1.
0

1.
5

2.
0

Interresponse intervals (second)

D
en

si
ty

(b) Density function of inter-response
intervals

0.005 0.020 0.050 0.200 0.500

5e
−

06
5e
−

05
5e
−

04

f (Hz)

P
ow

er
 S

(f
)

slope = 0.16

(c) Spectral density function of the re-
sponse error series

20 50 100 200

4
6

8
10

14

s

Q
(s

)

Slope = 0.46

(d) R/S plot of the response error series

Figure 8: An exemplar bot trace from Dancing Online

Table 1: Average Hurst indexes of response error
series generated by human players and bots respec-
tively. The third row (AUC) stands for the Area
Under Curve, which quantifies the power when the
Hurst index is used to discriminate human players
from bots under each game difficulty level.

Easy Medium Adv. Hardcore Overall
Human 0.588 0.613 0.613 0.567 0.601
Bot 0.507 0.454 0.459 0.472 0.463

AUC 0.805 0.952 0.970 0.843 0.924

dependent timing errors.

6.5 Classification Performance
Among our traces, the average Hurst index of human sam-

ples is 0.601 and that of bot samples is 0.463. We shall use
AUC (Area Under Curve) to quantify whether the Hurst
index can serve a good predictor for discriminating human
player and bot samples. A brief recap of the ROC (Re-
ceiver Operating Characteristic) curve and AUC (Area Un-
der Curve) [10] is given as follows. In the signal detection
theory, a ROC curve is a graphical plot of TPR (True Pos-
itive Rate) versus FPR (False Positive Rate) for a binary
classifier over different discrimination thresholds. AUC is
the area under an ROC curve, which can be used to indi-
cate the discrimination power of a binary classifier:

• AUC ≈ 0.5: No discrimination;
• 0.7 ≤ AUC < 0.8: Acceptable discrimination;
• 0.8 ≤ AUC < 0.9: Good discrimination;
• AUC ≥ 0.9: Outstanding discrimination.

We list the average Hurst indexes of the response error
series generated by human players and bots, as well as the
AUC for classifying the categories in Table 6.5. In addition,
the ROC curves with different game difficulty levels are plot-
ted in Figure 9. From the table, the overall AUC over all
difficulty levels is above 92%, which indicates that the Hurst
index alone is a powerful discriminating factor to classify hu-
man players and bots. We find that bots’ behavior remain
roughly the same regardless of the game difficulty levels. In
contrast, the long memory property of human response er-
rors tend to be less prominent when the game difficulty is the
most simple or the most difficult. It is reasonable because
when the game is very simple, human players can perfectly
follow the stimuli without much effort in coordination. On
the other hand, if the game is so difficult that the coordi-
nation mechanism cannot keep up with the stimuli, humans
tend to make more mistakes under such condition and their
responses would contain more randomness.

7. CONCLUSION
In this paper, we have proposed a novel scheme to de-

tect bots in rhythm games. We have shown that when
humans synchronize their responses to harmonic stimuli,
the series formed by the time differences between the re-
sponses and stimuli tend to form a long memory process.
Based on this property, the proposed scheme examines the
long-memoryness of the response error series to determine
whether a game session is played by humans or bots. Using
a set of traces collected from a number of players and real-
life bot programs, we have shown that the scheme can detect
the use of game bots despite of game difficulty levels.

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Overall
Easy
Median
Advanced
Top

Figure 9: The ROC curves of our Hurst-index-based
classifier with different game difficulty levels

Acknowledgments
This work would not have been possible without the sup-
port from International Games System Co. Ltd., the de-
veloper company of Dancing Online. Moreover, the authors
are much indebted to Andrew Liao, who developed the trace
collection program for Dancing Online. This work was sup-
ported in part by the National Science Council under the
grant NSC100-2628-E-001-002-MY3.

8. REFERENCES
[1] J. Beran. Statistics for long-memory processes.

Monographs on Statistics and Applied Probability. 61.
London: Chapman Hall. x, 315 p. 45.00 , 1994.

[2] K.-T. Chen, J.-W. Jiang, P. Huang, H.-H. Chu, C.-L. Lei,
and W.-C. Chen. Identifying MMORPG bots: A traffic
analysis approach. EURASIP Journal on Advances in
Signal Processing, 2009.

[3] K.-T. Chen, H.-K. K. Pao, and H.-C. Chang. Game bot
identification based on manifold learning. In Proceedings of
ACM NetGames 2008, 2008.

[4] Y. Chen, M. Ding, and J. A. S. Kelso. Long memory
processes (1/fα type) in human coordination. Phys. Rev.
Lett., 79(22):4501–4504, Dec 1997.

[5] S. Gianvecchio, Z. Wu, M. Xie, and H. Wang. Battle of
botcraft: fighting bots in online games with human
observational proofs. In Proceedings of ACM CCS’09, CCS
’09, pages 256–268. ACM, 2009.

[6] P. Golle and N. Ducheneaut. Preventing bots from playing
online games. Comput. Entertain., 3:3–3, July 2005.

[7] B. B. Mandelbrot and J. W. Van Ness. Fractional brownian
motions, fractional noises and applications. SIAM Rev.,
10:422–437, 1968.

[8] S. Mitterhofer, C. Kruegel, E. Kirda, and C. Platzer.
Server-side bot detection in massively multiplayer online
games. IEEE Security and Privacy, 7:29–36, 2009.

[9] H.-K. Pao, K.-T. Chen, and H.-C. Chang. Game bot
detection via avatar trajectory analysis. IEEE Transactions
on Computational Intelligence and AI in Games, Sep 2010.

[10] J. A. Swets. Signal detection theory and ROC analysis in
psychology and diagnostics: Collected papers. 1996.

[11] R. Thawonmas, Y. Kashifuji, and K.-T. Chen. Detection of
MMORPG bots based on behavior analysis. In Proceedings
of ACM ACE 2008, 2008.

[12] J. Yan and B. Randell. A systematic classification of
cheating in online games. In Proceedings of 4th ACM
SIGCOMM workshop on Network and system support for
games, NetGames ’05, pages 1–9, New York, NY, USA,
2005. ACM.

