
162 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 2, NO. 3, SEPTEMBER 2010

Game Bot Detection via Avatar Trajectory Analysis
Hsing-Kuo Pao, Kuan-Ta Chen, Member, IEEE, and Hong-Chung Chang

Abstract—The objective of this work is to automatically detect
the use of game bots in online games based on the trajectories of
account users. Online gaming has become one of the most pop-
ular Internet activities in recent years, but cheating activity, such
as the use of game bots, has increased as a consequence. Gener-
ally, the gaming community disapproves of the use of bots, as users
may obtain unreasonable rewards without making corresponding
efforts. However, game bots are hard to detect because they are de-
signed to simulate human game playing behavior and they follow
game rules exactly. Existing methods cannot solve the problem
as the differences between bot and human trajectories are gen-
erally hard to describe. In this paper, we propose a method for
detecting game bots based on some dissimilarity measurements
between the trajectories of either bots or human users. The mea-
surements are combined with manifold learning and classification
techniques for detection; and the approach is generalizable to any
game in which avatars’ movements are controlled by the players
directly. Through real-life data traces, we observe that the trajec-
tories of bots and humans are very different. Since certain human
behavior patterns are difficult to mimic, the characteristic can be
used as a signature for bot detection. To evaluate the proposed
scheme’s performance, we conduct a case study of a popular on-
line game called Quake 2. The results show that the scheme can
achieve a high detection rate or classification accuracy on a short
trace of several hundred seconds.

Index Terms—Behavior analysis, bot detection, cheating, mani-
fold learning, online games, similarity measure, trajectory.

I. INTRODUCTION

T HE objective of this work is to automatically detect the
use of game bots in online games based on the trajecto-

ries of account users. Although humans can easily detect game
playing bots, as exhibited in the competition The 2K BotPrize,1

it is shown to be difÞcult to design an automatic mechanism for
detecting such bots [1], [2]. By analyzing the behavior patterns

Manuscript received November 20, 2009; revised May 26, 2010; accepted
August 16, 2010. Date of publication September 02, 2010; date of current ver-
10622, Taiwan (e-mail: chz1971@gmail.com).

Color versions of one or more of the Þgures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object IdentiÞer 10.1109/TCIAIG.2010.2072506

1http://botprize.org/

hidden in the trajectories, we want to determine whether an un-
seen input is a bot or a human user. Online gaming is now one
of the most popular Internet activities; however, as the popula-
tion of online gamers has increased, game cheating problems,
such as the use ofgame bots, have become more serious. Game
bots are automated programs, with or without artiÞcial intelli-
gence, which help players enhance, accelerate, or bypass some
routines in a game. For example, in Þrst-person shooter (FPS)
games, users can employ bots to play in place of themselves
in order to get high scores and gain a reputation in the com-
upon such games.

Generally, the gaming community disapproves of the use of
game bots, as bot users obtain unreasonable rewards without
corresponding efforts. However, game bots are hard to detect
because they are designed to simulate human game playing be-
havior and they follow game rules exactly. Some bot detection
studies [2], [5], [6] propose using CAPTCHA tests during a
game to determine whether an avatar is actually controlled by a
person. Although this method is effective, it disrupts the game
play and degrades playersÕ feelings of immersion in the virtual
world [7], [8]. Alternatively, passive detection approaches, such
as schemes based on trafÞc analysis [1] and schemes based on
avatarsÕ shooting accuracy in FPS games [9], have been pro-
posed. The drawbacks of these schemes are that the former as-
sumes a game bot works as a standalone client, while the latter
are only suitable for detecting aim bots in shooting games.

In this paper, we propose a general approach for all genres of
games in which players control an avatarÕs movements directly.
Taking the avatarÕs movement trajectory as the input, we adopt
a learning method for bot detection. By analyzing a trajectory,
we determine whether a behavior pattern belongs to a partic-
ular player and can therefore be taken as thesignature of the
player. The rationale behind our approach is that the trajectory
of an avatar controlled by a human player is hard to simulate.
Players control the movement of avatars based on their knowl-
edge, experience, intuition, and a great deal of environmental

1943-068X/$26.00 © 2010 IEEE

164 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 2, NO. 3, SEPTEMBER 2010

Fig. 1. Screen shot ofQuake 2.

sion methods [20] can be used to approximate it.2 The above
methods only consider sequences of categorical values, so they
cannot be applied directly to our problem, which takes inputs
of numerical values. Linet al. [23] proposed a symbolic rep-
resentation called symbolic aggregate approximation (SAX) to
deal with numerical valued time series. The key step of SAX in-
volves discretizing continuous valued inputs to produce an ap-
proximate representation of the original inputs. The method has
been applied successfully to many time series problems; how-
ever, in our case, it would be unnatural to use it to produce dis-
cretized data and compute the dissimilarity measures that are
again in the continuous domain.

III. D ATA DESCRIPTION

In this section, we describe our case study gameQuake 2 and
the procedures used to collect the game traces. We also analyze
the navigation patterns in different traces.

1) Quake 2: Quake 2 is a famous FPS game developed by
id Software [24]. In FPS games, a player adopts the role of a
particular character and shoots his enemies via the user inter-
face shown in Fig. 1. Multiple players can participate in a game
simultaneously, and they can cooperate to complete a mission.
However, death-match games, in which each player tries to kill
as many other participants as possible, are much more popular.
Quake 2 was nominated ÒThe Best Game EverÓ byPC Gamer
in 1998, and went on to sell over one million copies [25]. One
reason for the gameÕs popularity is that it is easy to customize,
and a large number of maps, player models, textures, and sound
effects are available on the Internet. The game has been ported
to many platforms other than PCs, for example, Nintendo 64,
Playstation, Amiga PowerPC, and Xbox 360.

2) Human Traces: Quake 2 supports a game-play recording
function that keeps track of every action and movement, as well
as the status of each character and item, throughout the game.
With a recorded trace, one can reconstruct a game and review
it from any position and angle desired with VCR-like opera-
tions. Players often use this function to assess their performance

2In fact, the Kolmogorov complexity and various deÞnitions of entropy share
similar properties. More details can be found in [12] and [22].

TABLE I
TRACE SUMMARY

and combat strategies. Moreover, experienced players are en-
couraged to publish their game-play traces as teaching materials
for novice gamers and thereby build a reputation in the gaming
community.

To ensure that our game traces represented the diversity of
Quake players, we only used traces that players had contributed
voluntarily. The traces were downloaded from the following
archive sites: GotFrag Quake,3 Planet Quake,4 Demo Squad,5

and Revilla Quake Site.6 We mainly focus on the traces from
the map calledThe Edge, one of the most well-known levels in
death-match play. At this level, each playerÕs sole goal is to kill
as many other players as possible, until the time limit is reached.
Traces on other maps calledThe Frag Pipe andWarehouse were
also studied. However, the data sizes are relatively small and
only presented in a supporting role.7 In Section V-D, we study
the detection power crossing different maps. As short traces con-
tain little information, we only collected traces longer than 600
seconds.

3) Bot Traces: There are many game bots available forQuake
2. For this study, we selected three of the most popular bot pro-
grams for trace collection, namely CR Bot 1.14 [26], Eraser Bot
1.01 [27], and ICE Bot 1.0 [28].

To collect the game bot traces, we set up experiments on our
own Quake server and ran a number of game bots to Þght each
other. The experiment setup was as follows.

1) In each game, 2Ð6 bots were selected at random to Þght
each other. Each session spanned 20 h.

2) The game trace was recorded at the server using the server
record command.

3) The gameÕs catch-the-ßag mode was turned off, so the
game bots continued Þghting each other until the server
shut down. The cheating mode was also disabled.

4) The AI levels of CR Bots and Eraser Bots were randomly
set from 0 to 9 and 0 to 3, respectively.

We collected 1306 h of raw traces. Then, from each trace, we
took the Þrst 1000 s, the middle 1000 s, and another 1000 s near
the end to compile our data set.8 In total, we collected 143.8 h of
trace data, as shown in Table I. The CR Bots, Eraser Bots, and
all human players were active most of time (89%). The ICE

3http://www.gotfrag.com/quake/home/
4http://planetquake.gamespy.com/
5http://q2scene.net/ds/
6http://www.revilla.nildram.co.uk/demos-full.htm
7We show the result on The Edge map unless otherwise speciÞed.
8We assume that the sections at the beginning, in the middle, and near the

end of a trace are dissimilar, and can thus be considered as different samples. In
this way, we can create more useful data items as input for our learning scheme;
however, this preprocessing is not essential for our scheme to work properly.

PAO et al.: GAME BOT DETECTION VIA AVATAR TRAJECTORY ANALYSIS 165

Fig. 2. Aggregated trajectories on The Edge map, for players belonging to the
following groups: (a) human, (b) CR Bot, (c) Eraser Bot, and (d) ICE Bot. The
Þgure shows that the routing of bot traces is more predictable than that of human
traces, especially for the cases of CR Bot and Eraser Bot. Note that the bottom
left-hand side corner of the CR Bot navigation map in (b) shows no bot presence.
It may be difÞcult for some bots to visit the narrow area with a poor routing
algorithm. We also have similar results for the trajectories obtained in The Frag
Pipe map and Warehouse map (results not shown).

Bots were less active because they often remained idle in some
places waiting for an opportunity to ambush other players.

A. Navigation Patterns and Preliminary Analysis

Next, we compare the avatar trajectories of human players
and game bots based on certain observations. We consider the
navigation patterns of different types of players. First, we ana-
lyze their aggregated navigation patterns and then, the patterns
of individual trajectories.

1) Aggregated Navigation Patterns: We construct the aggre-
gated navigation pattern of each player type by plotting all the
observed coordinates in all traces of the particular player type on
a map, as shown in Fig. 2. The high density areas in each Þgure
are the places that players visit more frequently, while the sparse
areas represent buildings, other types of obstacles that players
cannot pass, or just areas that players are not interested in vis-
iting. The Þgures show that the game level is formed by squares,
plazas, and narrow alleys. This arrangement is designed specif-
ically for death-match play, as the winding routes provide cover
for players to hide, and the narrow alleys lead to intense Þghting
if players confront each other in these conÞned places. We ob-
serve that, even though all the movement traces were collected
on the same map, the navigation patterns of different types of
players are dissimilar. We summarize the differences below.

1) Human players tended to explore all areas on the map; thus,
Fig. 2(a) shows the most complete terrain of the level. In
contrast, the routing algorithms used by game bots may
have had difÞculty navigating certain places, so they never
visited some parts of the map. For example, the bottom left-
hand side corner of the CR Bot navigation map in Fig. 2(b)
does not indicate any visits.

2) To reduce the probability of being attacked, human
players normally avoid open spaces. Therefore, as shown

in Fig. 2(a), human players avoided the plaza in the middle
of the map, and stayed in the surrounding alleys instead.
This is indicated by the high density of plots in the alleys.
In contrast, game bots often stayed in the plaza, probably
because it is a large space and it is easy to get everywhere
from this area based on a simple routing algorithm.

3) Even though human players spent most of their time in
narrow areas and conÞned spaces, there were large vari-
ations in their trajectories. There are two reasons for this
phenomenon. a) The main routes are quite wide, so players
move irregularly within the space rather than stay in the
middle of a route. This may be due to playersÕ preferences;
hence, some players may move along the wall of the path,
while others may walk straight, unless the avatar is blocked
by a wall or other obstacles. b) As Þghts may occur any-
time, anywhere, human players often move strategically
to dodge current or potential attacks. In contrast, we Þnd
that the game bots adopt very different movement patterns
over the routes. The movement paths of CR Bot and Eraser
Bot [Fig. 2(b) and (c), respectively] are dense and easy
to identify. This suggests that these bots tend to follow
exact movement patterns when moving through the same
alley. However, ICE Bot [Fig. 2(d)] exhibits a nearly uni-
form distribution over all possible points on the map. This
implies that its routing algorithm decides the avatarÕs di-
rection rather than its exact movement pattern, so that the
probabilities of all points on the route are almost equiva-
lent.

Clearly, the difference between the botsÕ routing patterns and
those of human players explains the different aggregated pat-
terns on the map.

2) Individual Trajectories: Having analyzed the aggregated
navigation patterns of the different player types, we now ex-
amine their individual trajectories. We manually select a repre-
sentative trace for each of the four player types (a human player
plus three game bots). The avatar trajectory of each selected
trace is shown in Fig. 3.

Even if we only observe one trace at a time, the difference
between the player types is still apparent. Our observations
about the aggregated navigation patterns still hold. SpeciÞcally,
the narrower a place is, the higher the probability that human
players will stay in that place, which is the opposite of the
game botsÕ behavior patterns. Moreover, human playersÕ tra-
jectories contain much more irregularity and turns than those of
bots. There are two possible explanations for this: 1) irregular
moves reduce the chances of being attacked from behind; and
2) human decision making can be erratic and thus may not
be logical all the time. A human player may change his/her
mind any time and adjust the characterÕs step and direction,
basing the decision on unpredictable factors. In contrast, botsÕ
trajectories are mostly characterized by straight and long paths.

The differences between the movement patterns of human
players and game bots provide the conceptual framework
for our trajectory-based behavior analysis and bot detection
scheme. Even though bot developers may counter the detec-
tion algorithm by training bots to mimic human behavior,
we argue that certain human behavior traits are difÞcult to
emulate. While game botsÕ Þxed movement patterns can be

166 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 2, NO. 3, SEPTEMBER 2010

Fig. 3. (a)Ð(d) Game-play trajectories of a human player and three bot players in The Edge map; (e) and (f) game-play trajectories of an Eraser bot in TheFrag
Pipe map and in Warehouse map, respectively. The botsÕ trajectories exhibit less randomness/irregularity than the humanÕs trajectory.

made more ßexible by incorporating randomness into the nav-
igation logic, evaluating whether a place is ÒdangerousÓ can
be nontrivial. For example, human players tend not to stay
in the central plaza on the map and thereby they reduce the
probability of being attacked; however, it is difÞcult for game
bots to ÒsenseÓ the environment and ÒdecideÓ to avoid staying
in the plaza. Therefore, we believe that bot detection schemes
based on avatar trajectories would be robust to bot developersÕ
countermeasures. (This assumption is supported by the empir-
ical study discussed in Section V-C.)

In summary, bot patterns are more regular than human pat-
terns, and it is easier to predict whether a bot will go to a par-
ticular location than is the case with a human user. We use this
observation as the basis for simplediscriminant analysis. If we
use abinary random variable to describe an event where a
trace touches a locationwithin a certain period, we can com-
pute the entropy of the random variable by

The entropy values of human traces should be higher than
those of bots, given a prespeciÞed period. We test our conjec-
ture on of 10 000-s traces9 of The Edge, the map mentioned at the
beginning of this section. Formally, we partition the original 2-D
map into grids with a Þxed size of 20 units, and count the number
of times the trace visits each grid. We then normalize the total
number to between 0 and 1 as the distribution (divided by the
number of steps taken by the avatar or 10 000 in this case), and
compute the entropy of the distribution. In this way, we obtain
the entropy of each location for each trace; and we can use the
average entropy of a map as the discriminant to distinguish bots
from human users. We use 80% of the traces as training input

9We choose a trace longer than 1000 for better visualization effect and better
performance based on entropy computation, which implies that the entropy
computation is not as effective as the methods proposed in this paper.

TABLE II
SUMMARY OF HUMAN AND BOT ENTROPY VALUES. THE DECISION

THRESHOLD BETWEEN HUMAN AND BOT PLAYERS IS SET AS
THE MIDPOINT OF THE AVERAGE ENTROPY VALUES OF

HUMAN AND BOT USERS; I.E., WE CHOOSE
����� � ������ 	
 ���� AS THE THRESHOLD

TABLE III
SUMMARY OF DATA AND RESULTS. THEREARE 138 TRACES, EACH OF 10 000
s. WE USE80%OF THEM FORTRAINING AND THE REMAINDER FORTESTING

and compute the tracesÕ average entropy values to set the deci-
sion threshold for different types of players. The remaining 20%
of traces are used as test data to evaluate our conjecture. If the
average entropy of a test trace is higher than the threshold, we
label it as a human user; otherwise, we label it as a bot. As shown
in Table II, the average entropy values are ,

, , and for humans,
CR Bots, Eraser Bots, and ICE Bots, respectively. We set the
threshold at 8.95 to judge whether a trace is a bot or a human
user. The method can achieve 88.57% test accuracy, as shown
by the results in Table III. We need to emphasize that the de-
tection based on entropy computation is sensitive to the length
of input trajectories. We choose long enough traces (equal to
10 000 steps) so that the trace user starts to explore most of the

PAO et al.: GAME BOT DETECTION VIA AVATAR TRAJECTORY ANALYSIS 167

space and we can see the discriminant results.10 In Section IV,
to further improve the detection power of our approach, with
shorter trace inputs and higher detection accuracy, we propose
a dissimilarity-based method for robust bot detection.

IV. BOT DETECTION SCHEMES

Our objective is to analyze the behavior patterns hidden in
trajectories to distinguish between bots and human users. Based
on the discussion in the previous section, we can simply use
the average entropy as a feature, which yields a detection accu-
racy rate of 88.57%. In general, it is straightforward to consider
several features of trace sequences that have been suggested by
experts for bot detection. Chenet al. [29] recommended using
various features, such as on/off activity, pace statistics, path sta-
tistics, and turn information, as the feature set for classiÞcation.
They reported accuracy rates of 80%Ð90% for different combi-
nations of the features. The above features, including average
entropy, can also be combined to further enhance the classiÞca-
tion performance.

However, expert knowledge is expensive and sometimes un-
reliable or biased. Generally, feature extraction is a difÞcult task
if not an art. In this work, to detect bots from the trace inputs
automatically, we employ two approaches for feature extraction
and trajectory representation without the help of expert knowl-
edge. The approaches try to measure the dissimilarity of pair-
wise trajectories, and the pairwise dissimilarities are used to Þnd
representatives in the new space. The representative points with
speciÞcsignaturesin the space are labeled as bots.

The input is a trajectory, or a series of location coordinates,
in either a 2-D or 3-D space, i.e.,
up to time . Usually, represents the effectiveness of the de-
tection technique, or how quickly an alarm should be raised
about a bot or a user who is cheating. The key step is to transform
the trace data into a point in a new, probably low-dimensional
space called therepresentation spaceand solve the detection
problem in the space via a classiÞcation method.

We apply two dissimilarity measures and use amanifold
learning technique called Isomap [11] to Þnd the trace repre-
sentation/embedding. Then, we adopt two methods, the-NN
algorithm and the support vector machine (SVM) model [30],
[31], forclassiÞcation in therepresentationspace.Followingcon-
vention, we treat bot traces as positive samples and human traces
as negative samples to form a binary classiÞcation problem.
Our bot detection algorithm comprises three parts:dissimilarity
measurement, trajectory representation, andbot detection via
classiÞcation. The Þrst step measures the dissimilarities between
pairs of trajectories. We utilize two measures, one without and
onewith temporal information. In thesecondstep, Isomap isused
to Þnd the low-dimensional embeddings of trajectories given the
pairwise dissimilarities. Then, given the embeddings in a low-di-
mensional space, the third step detects bots in the representation

10The data sets from The Frag Pipe map and Warehouse map include many
short trajectories from human users, therefore not appropriate to apply this en-
tropy-based detection method. In general, the choice of entropy threshold to
distinguish between human and bot users depends on the map layout. Different
maps may induce or cause players to react differently. Just like the examples
mentioned in the text, we can easily see different patterns from human and bot
traces in open space, or narrow corridors of the map. Roughly speaking, if a
map includes more of those regions, we expect to see larger gaps between the
entropy values computed from human and bot traces.

TABLE IV
NOTATIONS

space. The generic algorithm is shown in Algorithm 1. In the
following, we discuss the major components of the algorithm.

Algorithm 1 : Generic algorithm for bot detection

Input : The new (unlabeled) trace seq. and a set of
labeled traces ,

Output : Label of

/* step 1:Dissimilarity Measurement

1 for in do

2 Compute dissimilarity [via (1) or (6)];

3 end

/* step 2:Trajectory Representation

4 Given a matrix , apply Isomap to Þnd embeddings of
trajectories in a low-dimensional space;

/* step 3:Bot Detection via ClassiÞcation

5 Given the low-dimensional embeddings, adopt classiÞcation
method -NN or smooth SVM (SSVM) for bot detection

Table IV summarizes the notations used in the remainder of the
paper.

PAO et al.: GAME BOT DETECTION VIA AVATAR TRAJECTORY ANALYSIS 169

Note that does not have to be the associated model of the
trace . Therefore, we can deÞne the distance between two tra-
jectories and as

(6)

where is a new trace formed by concatenating the traces
and , and is the associated model of the concatenated16

trace . In this way, for each pair of traces, we derive pair-
wise distance values, which will be used as input to Þnd the
representation of the traces. The dissimilarity values of pairwise
traces are stored in a symmetric matrix . The matrix
or will in turn be input to Isomap in order to Þnd the repre-
sentations/embeddings of the trajectories. We discuss the results
of choosing different dissimilarity measures in Section V.

Parameter Estimation for the Markov Chain: We assume
that the trace sequence for the step-size changes
and angle changes follows the Markovian property. As men-
tioned earlier, we use a Gaussian-distributed transition as the
transition function to approximate the step-size changes and
angle changes, which are centered atand and with vari-
ances and , respectively. The parameters can be estimated
directly from the sample means and variances of the related data
inputs. Given a trace, we can compute the differences between
consecutive step sizes as and estimate the
mean and the variance via the sample meanand the variance

. Similarly, for the angle changes, we can estimateand
via the sample mean and the variance .

B. Trajectory Representation

Trajectory representation seeks to represent a set of trajecto-
ries in a Euclidean space such that the Euclidean distance in the
space fully represents the relations between the trajectories. In
this study, we consider that two traces are similar if:

1) they both have small measurements in (1) or (6); or,
2) they are both similar to a third trace.
The second criterion means that two trajectoriesand

are friends if they have a common friend, even if they do
not have small values of or themselves. To Þnd a
metric to satisfy these criteria, we adopt Isomap [11] as the rep-
resentation technique. The rationale behind this choice is that
there is a high degree of variance among the trace sequences of
human users and bots; therefore, it is difÞcult to propose a uni-
versally effective rule for detecting bots or identifying particular
behavior patterns from trace sequences. With the second crite-
rion, even if two trajectories are not highly similar, we can deem
them close to each other simply because they are both similar to
a third trajectory. A friendship that has such a transitive prop-
erty can help us determine theglobal distance between pairwise
trajectories.

The goal of Isomap is to Þnd a representation in an intrinsic
space in which it tries to maintain the neighborhood relation-
ship between each pair of trajectories locally; however, glob-
ally, a geodesic distance between the two points/trajectories is

16We can treat� and� as virtually the same to generate similar models
between� or � . The only factor that makes a difference is the transition
at the concatenation point between� and� .

substituted to describe their distance/dissimilarity. Given a dis-
similarity matrix (or in our case), the Isomap
process can be divided into three steps. 1) Construct a neighbor-
hood graph by linking each pair of points that qualify as neigh-
bors. 2) Find the length of the shortest path between each pair
of points and take it as the approximation of their geodesic dis-
tance. 3) Take the pairwise (geodesic) distance as the input and
apply multidimensional scaling (MDS) to Þnd the global Eu-
clidean coordinates of the points. The ÒoptimalÓ dimensionality
for separating the different kinds of trajectories can be estimated
by Þnding the ÒelbowÓ point in the residual variance curve [11].

Figs. 4 and 5 show the results of applying Isomap17 given the
dissimilarity measures derived from the step size (without tem-
poral information) and from the Markov chain model (with tem-
poral information), respectively. The (green) circles indicate the
traces of human users, while the others are obtained from sev-
eral different bots. Among them, CR Bots (the cross symbols)
and the human players appear to have the highest variances,
but the ICE Bots exhibit relatively low variances. More impor-
tantly, data items with different labels are well separated. How-
ever, such discriminative results cannot be obtained if we use the
well-known principal component analysis (PCA) method [33]
for dimension reduction, as shown in Fig. 6. It is noteworthy
that the representation derived by the Markov-chain-based mea-
sure is visually better than the one derived by the step-size mea-
sure because it includes temporal information about the trace.
In Fig. 5, points/trajectories of the same type are clustered to-
gether, but that is not the case in Fig. 4. We believe that adding
temporal information provides a better representation of trajec-
tory behavior. Moreover, as we will show later, the classiÞcation
in the representation space derived by the Markov chain model
is more accurate than the one derived by the step size only. After
Isomap Þnds a low-dimensional representation of the data, we
can use any classiÞcation scheme, e.g., the-NN algorithm or
SVM, to label a new trace (i.e., either a bot or a human player).

C. Bot Detection via Classification

Given the trajectory representation, in principle, we can use
any classiÞcation or clustering method for bot detection. In this
study, we adopt SSVM, which tries to solve an unconstrained
minimization problem [34], and the-NN algorithm for most
of our evaluations. We assume that the trajectory representations

are located in an -dimensional space. Their associated la-
bels are denoted by .

1) -Nearest Neighbors: The -NN algorithm is one of the
oldest and most intuitive classiÞcation methods, and many ap-
plications demonstrate its competitive performance compared
to other classiÞers (e.g., [35]). Under-NN, the class label of a
new trace is decided by the class labels of the traces surrounding
it. One of the keys to the successful application of-NN is the

17We only present data in 2-D for visualization purposes. In general, the de-
tection or classiÞcation task is executed in the space of intrinsic dimensionality.
The embedding produced by Isomap often suggests some meaningful insight for
the matter of understanding patterns from humans or bots, if the pattern can be
visualized in low-dimensional space. For instance, in this scenario, an axis may
indicate that the avatars turn smoothly or abruptly; or tend to go in a constant
step size or in a varied step size. Unfortunately, according to the traces superim-
posed on the Isomap results, due to the difÞculty of visualizing the trace data, it
is not easy to Þnd out what the axes mean in this scenario.

PAO et al.: GAME BOT DETECTION VIA AVATAR TRAJECTORY ANALYSIS 173

Fig. 9. Histograms of the step sizes for trajectories of (a) bot users and (b) human users. A large number of constant size steps are found in bot trajectories, but
not in human trajectories. However, after adding some Gaussian noise in (a) to (a1), we obtain a histogram that is hard to distinguish, at least visually, from that
for a human user.

Fig. 10. Some white noise is added to the trajectories to test the robustness of
the detection methods based on step-size input. The�-axis shows the standard
deviation going higher in the rightward direction. Mostly, the methods combined
with Isomap perform better than those methods without it.

The step sizes of common bots have very regular distribu-
tions, as shown in Fig. 9(a), which is the histogram of the step
size derived from a CR BotÕs trajectory. That is, a bot tends to
maintain a constant step size (around 32 in this case), which is
not usually observed in human trajectories. Such features could
easily be identiÞed by a smart detector. Therefore, it is under-
standable that a bot user will try to avoid detection by adding
somewhite noise to the step size. Our detector can deal with
this kind of camoußage. Fig. 10 shows the results when dif-
ferent levels of white noise are added to the botÕs trajectory
in the step-size domain. After adding the noise, the distribution
may not be visually distinguishable from a regular human trajec-
tory [as shown by comparing Fig. 9(a1) and (b)]. Nevertheless,
the experiment shows that our method can detect bot users via
the step-size dissimilarity measure with a very low error rate.
Once again, in most cases, the methods with Isomap perform
better than those without it. Moreover, in terms of accuracy,
SSVM-based approaches usually outperform-NN-based ap-
proaches in terms of accuracy.

When temporal information is considered, the dissimilarity
measure based on the Markov chain model is even more effec-
tive than the approach that only considers step-size inputs. With
input trajectories equal or longer than 1000 s, all bots are de-
tected with 100% accuracy.

D. Crossing Different Maps

Sometimes human movement may be restricted by the en-
vironment around him/her. For example, in a game, imagining
that we are in a tunnel, then we can only move forward or back-
ward in such a condition, and both of our ßanks are suffocated
by the surroundings. We would like to ensure that a model built
for one map can be used for another map. We proceed to study
this problem.

In this section, we would like to test the inßuence of the traces
from different maps to our framework. We use traces from three
maps which are very dissimilar to each other. The collected data
information is in Table VII. The map The Edge is the simplest,
containing some plazas and tunnels. The map The Frag Pipe
contains many tunnels, and if the players encounter others, they
have no cover and their movement is highly restricted by the
surroundings we mentioned before. The map Warehouse has
a very complicated structure and contains many ßoors. In this
map, players can easily get lost in the map due to the com-
plex landform. Three traces collected from the three maps are
shown in Fig. 11 for visualization purpose. In the experiments,
we collect traces from different maps together for the tenfold
cross validation, and the validation test is carried out without
acknowledging the source of the trace. As the experiment re-
sults show in Fig. 12, the performance is still good and not much
affected by the cross-map effect. The accuracy from the model
trained by traces from different maps has a difference of up to
1%, from the accuracy from the model built for a single map,
and the performance of the approach combining Isomap and
nonlinear SVM remains the best compared to other approaches.
We should also emphasize that our model is based on features
computed from local movements, such as step size, step-size
changes, and angle chances. Those statistics are less likely to
be inßuenced by map layout, compared to the statistics based
on long-term movements. Therefore, in terms of keeping sim-
ilar performance across different maps, the proposed method is

