
1

On the Challenge and Design of Transport
Protocols for MMORPGs

Chen-Chi Wu†, Kuan-Ta Chen‡, Chih-Ming Chen†, Polly Huang†, and Chin-Laung Lei†

†Department of Electrical Engineering, National Taiwan University
‡Institute of Information Science, Academia Sinica

Abstract

Although MMORPGs are becoming increasingly popular as well as a highly profitable Internet business, there is
still a fundamental design question: Which transport protocol should be used—TCP, UDP, or some other protocol? In
this paper, we first evaluate whether TCP is suitable for MMORPGs, and then propose some novel transport strategies
for this genre of games. Our analysis of a trace collected from a TCP-based MMORPG called ShenZhou Online
indicates that TCP is unwieldy and inappropriate for MMORPGs. We find that the degraded network performance
problems are due to the following characteristics of MMORPG traffic: 1) tiny packets, 2) a low packet rate, 3)
application-limited traffic generation, and 4) bi-directional traffic.

Since not all game packets require reliable transmission or in-order delivery, transmitting all packets with a strict
delivery guarantee causes high delays and delay jitters. Therefore, our proposed transport strategies assign game
packets with appropriate levels of transmission guarantee depending on the requirements of the packets’ contents. To
compare the performance of our approach with that of existing transport protocols, we conduct network simulations
with a real-life game trace from Angel’s Love. The results demonstrate that our strategies significantly reduce the
end-to-end delay and delay jitter of packet delivery. Finally, we show that our strategies effectively raise satisfaction
levels of the game players.

I. INTRODUCTION

Massive Multiplayer Online Role Playing Games (MMORPGs) have become extremely popular in recent years,
and now attract millions of players who participate in the activities with other gamers in a virtual world. The
number of active subscribers worldwide increased from 12 million to 16 million between January 2007 and January
2008 [22]. However, degraded network performance, such as lengthy delays and excessive delay jitters affect players’
willingness to continue in a game [6]. How to ensure that players have a satisfactory gaming experience is currently
the most critical issue facing the game industry [8, 9].

A fundamental design question in the development of MMORPGs is—Which transport protocol should be used—
TCP, UDP, or some other protocol? GameDev.Net offers the following advice [2]: “For RTS (Realtime Strategy)
games, you’re usually best off using TCP, although UDP can make sense in extreme cases. For action-based games
like first-person shooters or racers, you should absolutely use UDP. For role playing games, the story is less clear—
action-based RPGs with lots of kinetics, like City of Heroes, use UDP, whereas slower RPGs and MUDs often
stay with TCP.” As shown in Table I, both TCP and UDP are widely used by popular MMORPGs, while other
games may adopt a hybrid approach based on both protocols. Several other transport protocols can be candidates
for MMORPGs, for example, RTP, the datagram congestion control protocol (DCCP) [15], the stream control
transmission protocol (SCTP) [20], the game transport protocol (GTP) [17], and other middleware protocols [1, 12].
Because of the diversity of protocols in use and several newly designed protocols, there is no consensus on the best
transport protocol for this genre of games. In this paper, we first assess whether TCP is suitable for MMORPGs,
and then propose transport strategies that assign appropriate levels of transmission guarantee to each game packet
to opportunistically improve the packet delivery performance.

Based on a real-life trace collected from a TCP-based MMORPG called ShenZhou Online [21], we investigate
the performance problem caused by the interplay of TCP and the design of MMORPGs. The following findings
show that TCP is unwieldy and inappropriate for MMORPGs.

1) Since game packets are generally small, TCP/IP headers occupy up to 46% of the total bandwidth consumed
by the game traffic.
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TABLE I
THE TRANSPORT PROTOCOLS USED BY POPULAR MMORPGS

Protocol MMORPGs

TCP World of Warcraft, Angel’s Love, Lineage I/II, Guild Wars, Ragnarok Online
UDP EverQuest, City of Heroes, Asheron’s Call, Ultima Online, Final Fantasy XI
TCP/UDP Dark Age of Camelot

2) As some game packets can be processed out-of-order, forcing in-order delivery for all packets causes un-
necessary transmission delays. In our evaluation, 7% of connections experience more than 20% additional
average delay, and 6% experience at least 200% additional delay jitter.

3) The congestion control mechanism is ineffectual because game traffic is application-limited, rather than
network-limited. In our trace, 12% of client packets and 18% of server packets encounter a congestion window
reset, which prevents the packets from being transmitted immediately and induces additional latencies.

4) The fast-retransmit algorithm is ineffective because game traffic is bi-directional and packets are generated
at a slow rate. We found that more than 99% of dropped packets sent from servers were not detected until
retransmission timeout occurred. This causes the average latency of lost packets to be much longer than that
of normal (non-lost) packets.

UDP is another widely used transport protocol, but it cannot be applied to MMORPGs directly due to the lack
of reliable and in-order transmission. To deal with packet loss and the reordering of game messages that need strict
reliability and in-order processing, an excessive amount of effort is required if UDP is adopted.

In practice, the most appropriate protocol for MMORPGs is a hybrid that provides different levels of transmission
guarantee based on the requirements of game packets, so they can be transmitted efficiently, i.e., the delays and delay
jitters are as low as possible. For example, chat messages should be transmitted reliably and in an orderly manner,
while the loss of certain position updates for avatars is tolerable. To meet these requirements, we propose content-
based transport strategies that provide each type of packet content with the appropriate level of delivery guarantee.
Based on a trace collected from Angel’s Love, we conducted network simulations to compare our strategies with
some existing transport protocols in terms of network performance. The results show that our strategies incur much
lower end-to-end delay and end-to-end delay jitter than most of the protocols we evaluated. Finally, based on a
model that describes the relationship between network quality and users’ playing time [6, 7], we designed the Game
Satisfaction Index (GSI) to quantify the gaming experience of players under different network conditions. We show
that the level of player satisfaction under our transport strategy is 3.57 times better than that of TCP.

Our contribution in this work is three-fold:
1) Based on a realistic game trace, we analyze the performance of TCP and demonstrate that it is unsuitable

for MMORPGs.
2) We propose content-based transport strategies for MMORPGs, and evaluate their performance improvement

over existing protocols.
3) We present the Game Satisfaction Index, which explicitly indicates that the proposed transport strategies

significantly improve player satisfaction in MMORPGs.
The remainder of this paper is organized as follows. Section II contains a review of related works. In Section III,

we analyze the performance problems caused by TCP. Section IV details the proposed transport strategies. We
evaluate the performance of existing and proposed transport protocols using trace-driven network simulations with
a real-life game trace in Section V. Then, in Section VI, we summarize our conclusions.

II. RELATED WORK

With the growing popularity of MMORPGs, a number of works focus on evaluating the performance of transport
protocols in this genre of games. For example, in [14], Harcsik et al. evaluated the packet delivery latency of
TCP, SCTP, and two middleware protocols based on UDP. Because of the small packet sizes and low packet rates
in MMORPGs, game applications never consume all of the available bandwidth. Therefore, traditional transport
mechanisms, such as TCP, are not suitable for MMORPGs because they assume that packet generation is network-
limited, rather than application-limited. Harcsik et al.’s evaluation results demonstrate that UDP-based middleware
protocols perform better than TCP and SCTP.

Other studies have designed transport protocols for MMORPGs. In [13], the authors proposed two approaches to
make TCP more suitable for MMORPGs. The first sets a more aggressive retransmission timeout, and the second
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TABLE II
SUMMARY OF GAME TRAFFIC TRACES

Trace Date Period Drops† Session Pkt. (in / out) Bytes (in / out)

N1 8/29/04 (Sun.) 8 hr. 0.003% 7,597 342M / 353M 4.7TB / 27.3TB
N2 8/30/04 (Mon.) 12 hr. ?‡ 7,543 325M / 336M 4.7TB / 21.7TB

† This column gives the kernel drop count reported by tcpdump.
‡ The reported kernel drop count was zero, but we found that some packets were actually dropped at the monitor.
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Fig. 1. Payload size distribution

deploys a proxy to multiplex streams sent to clients into a single connection. Both approaches reduce packet delay
in games. However, the type of packet is not considered thus there must be extra overhead for certain packets
as the QoS levels required by game packets are not equivalent. In another work [17], Pack et al. proposed the
Game Transport Protocol (GTP), which is designed to meet the various requirements of MMORPGs. GTP uses
a packet-oriented, rather than a byte-oriented, window scheme to accommodate the small packet size of game
traffic. In addition, to satisfy the real-time constraints of packet delivery, GTP supports an adaptive retransmission
scheme, which controls the maximum number of retransmissions based on each packet’s priority. Although the
work incorporates the concept of multiple QoS levels, it does neither address, in practice, how to map a variety
types of game packets with different QoS levels, and nor provide a performance evaluation of the proposed design.

In [18], Shirmohammadi et al. proposed to transmit update messages according to multiple QoS levels in
collaborative virtual environments (CVE). In CVEs, some messages require reliable transmission because their
loss will incur collaboration failures. For example, the last state of a shared object in a CVE must be delivered
reliably so that all participants can perceive the last position of the object correctly. On the other hand, some
update messages can be sent by a best effort delivery as they can be lost without impacting the interaction between
participants. For example, the loss of most move updates is tolerable if the last one has been received correctly.
In view of different delivery requirements, Shirmohammadi et al. classify the messages into two types: key update
messages and regular update messages. The authors implement their proposed approach based on SCTP and conduct
subjective experiments to evaluate the performance of the proposal. The results show that their approach achieves
reliable and timely transmission for key messages even in a congested and lossy network environment.

III. ANALYSIS OF TCP PERFORMANCE

TCP is a connection-oriented transport protocol that provides reliable transmission, in-order delivery, congestion
control, and flow control. In this section, we analyze the performance of TCP in MMORPGs based on real-life
game traces. We find that in-order delivery causes unnecessary transmission latencies and high delay jitters, and
the protocol’s congestion control and loss recovery mechanism are ineffective in MMORPGs.

A. Trace Description

First we describe the traces used for evaluating the performance of TCP in MMORPGs. ShenZhou Online is a
TCP-based MMORPG that is popular in Taiwan [21], where there are thousands of players online at any one time.
In this game, players can engage in fights with other players or random creatures, train their avatars to acquire
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special skills, participate in commercial activities, or take on a quest. With the assistance of ShenZhou Online staff,
we set up a traffic monitor to capture packets sent from and received by the game servers. The collected traces are
summarized in Table II. Although the game servers were located in Taiwan, we found that the players in the traces
were spread over 13 countries and hundreds of autonomous systems. The wide distribution of clients manifests the
heterogeneity of the network paths’ characteristics and the generality of the traces. Because of space limitations,
we refer interested readers to [5] for details of the game description and measurement setup.

Next, we investigate the characteristics of the collected traces. For brevity, we denote packets sent by game
clients as client packets, and all traffic sent by clients as client traffic. The terms server packets and server traffic
are defined similarly. Fig. 1 shows the cumulative distribution function (CDF) of the payload size. Clearly, client
packets and server packets are drastically different in terms of the payload size. The reason is that a client packet
only contains one player’s commands, whereas a server packet for a player may contain the actions and states of
nearby avatars, and even system notifications. Client packets are relatively small. In the traces, 98% of the packets
have a payload size smaller than 32 bytes. Specifically, the payload sizes of 23 and 27 bytes comprise 36% and 52%
of the packets respectively. This distribution evidences that user actions are dominated by a few popular commands,
such as attack and walk, so that a large proportion of client packets have certain payload sizes. In contrast, server
packets have a wider distribution and the average payload size is 114 bytes.

Figure 2 shows the distribution of packet interarrival times. For client traffic, most packet interarrival times are
spread over 0 ms to 600 ms. We find that the best-fit exponential distribution, with a rate of 8 pkt/sec, approximately
fits the empirical cumulative distribution function. However, the deviation of the exponential-fit is apparent at time
scales larger than 200 ms. According to [5], the deviation of interarrival times is caused by the diversity of players’
behavior, which is a specific feature of adventure-oriented games like MMORPGs. On the other hand, approximately
50% of the interarrival times for server packets are around 200 ms, which indicates that servers broadcast information
to clients periodically.

B. Protocol Overhead

TCP provides reliable data transmission through a positive acknowledgement policy. When a host receives a
data packet, it must generate an acknowledgment (ack) packet as feedback for the sender. Consequently, a large
number of ack packets are generated and transmitted over the network. In [4], the author proposed a delayed ack
mechanism that allows the host to only send an ack for alternate data packets received in a connection, unless the
delayed ack timer (usually set at 200 ms) has expired. In bulk data transfer scenarios, where packets are sent in
bursts, the majority of successive packets arrive at the destination before the delayed ack timer expires. Therefore,
the number of ack packets should be reduced to half the number of data packets. However, because of the low
packet rate in MMORPGs, the subsequent game packet may not arrive in 200 ms from the time the preceding
packet was received.

In our traces, the number of client ack packets is much more than half the number of server data packets. This is
because approximately 40% of the interarrival times for server packets are longer than 200 ms (as shown in Fig. 2).
Furthermore, 38% of the packets in the traces are pure ack packets. Because of the relatively large proportion of
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Fig. 3. The impact of packet loss on network latency

pure ack packets and the small payload size of game packets, the network bandwidth occupied by the TCP/IP
header constitutes an excessive overhead. For example, in the traces, TCP/IP headers occupy 46% of the bandwidth
consumed by the game traffic.

C. In-Order Delivery

TCP has an in-order delivery policy that guarantees the receiver will process data packets in the order generated
by the sender. Under this mechanism, a packet must be buffered at the receiver until all of its preceding packets
have been received and processed. In other words, if a packet is lost in the network, all of its subsequent packets
that have been received already would suffer additional delay. However, certain game packets do not require in-
order processing, so the mechanism may cause unnecessary delay. For example, if a player attacks an opponent
repeatedly with the same weapon and the same action, the game application will generate a number of duplicate
packets with attack messages and transmit them to the server. In this case, the packets can be processed out of
order at the server without affecting the outcome of the game. Moreover, position or state updates in MMORPGs
are often designed to be accumulative; that is, subsequent updates override earlier ones. As a result, an update
packet can be processed immediately on arrival, instead of being buffered until all of its preceding packets arrive
at the destination host.

To evaluate how much additional delay is caused by strict in-order delivery, we consider an extreme case in
which all game packets can be processed in an arbitrary order. We investigate the influence of packet loss, which
is the main source of out-of-order delivery, in terms of transmission latency and delay jitters (i.e., the standard
deviation of the latency). Since the traces were collected at the server side, we define latency as the time difference
between the departure time of a server packet and the time the corresponding ack packet is received.

In Fig. 3(a), we show the average latency of normal (non-lost) packets, lost packets, and all packets. Before
retransmitting a dropped packet, the sender needs extra time to detect a lost packet. Thus, the average latency of
packets that have been lost (576 ms) is much longer than that of normal packets (186 ms). Fig. 3(b) shows the
expansion ratio of latency due to packet loss for connections that experienced at least one packet loss. We observe
that 33% of them suffered more than 10% additional latency, and 7% suffered more than 20%. Overall, packet loss
caused the average latency to increase from 186 ms to 199 ms.

Although packet loss does not raise the average latency excessively, delay jitter is seriously affected. As shown
in Fig. 4(a), the delay jitter of lost packets is spread more widely than that of normal packets. The average delay
jitter of lost packets (321 ms) is four times longer than that of normal packets (77 ms). Figure 4(b) shows the
expansion ratio of delay jitter due to packet loss. We observe that 22% of connections suffered more than 100%
additional jitter, and 6% suffered more than 200%. The overall average delay jitter increased from 77 ms to 123
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Fig. 5. The comparison of retransmission timeouts (RTO) and packet interarrival times

ms. According to [7], high delay jitter is less tolerable than high latency, as a continuously fluctuating game pace
severely reduces the smoothness of the game play. Thus, the increase in delay jitter caused by the joint effect of
the in-order delivery policy and packet loss could significantly degrade players’ gaming experience.

D. Congestion Control

To avoid congestion collapse in a network and use the network’s capacity effectively, TCP uses a congestion
window (cwnd) so that each sender can limit the sending rate based on its perceived network condition. Using the
additive increase and multiplicative decrease (AIMD) policy [3], the size of the cwnd additively increases when
the sender perceives that the end-to-end path is congestion-free, and multiplicatively decreases when it perceives
congestion (e.g., packet loss) on the path. Therefore, for efficiency and to avoid congestion avoidance, the cwnd is
adjusted to approximate the bandwidth available for legitimate use by a connection.

The AIMD policy is based on the assumption that data transmission is network-limited, i.e., the sender always has
data to send in the connection. In the case of bulk transfers, the cwnd inflates when a packet is acknowledged, and
shrinks when packet loss occurs. Hence, the cwnd oscillates between the minimum size and a value corresponding
to the available bandwidth. However, in MMORPGs, data generation is application-limited, i.e., an application
usually has a smaller amount of data to send compared with the available bandwidth it can use. Thus, packet loss
is rare in this kind of game because the traffic load is usually much smaller than the network capacity. As a result,
the cwnd becomes arbitrarily large and cannot faithfully reflect the condition of the network path. In our traces,
the maximum and average window sizes in the server to client direction are 1.7 Mbps and 372 Kbps respectively.
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TABLE III
THE REASONS WHY FAST RETRANSMIT FAILED TO TRIGGER

Cause Ratio

Insufficient duplicate acks 50.96%
Duplicate ack accumulation was interrupted 49.04%

New data 48.90%
New ack 0.02%
Window size change 0.12%

Both sizes are too large to reflect the available bandwidth of individual flows. In addition, we found that 36% of
connections experienced no packet loss, which would never happen in network-limited applications with sufficient
data. A potential problem associated with an inaccurately large window size is that an application with application-
limited traffic may occasionally have a large burst of packets to send in a short time. This condition results in
the release of an overwhelming traffic load due to the inappropriately large window size; therefore, the network
bandwidth will be exhausted and congestion will occur unnecessarily.

Although the congestion window tends to become arbitrarily large in MMORPGs, it could be reset incorrectly
because of the restart after idle periods policy [3]. In a connection, if the sender has not released packets in an
interval longer than one retransmission timeout (RTO), the congestion window should be reset to two packets.
The purpose is to prevent an inappropriate burst of packets being transmitted due to an out-of-date cwnd that
does not faithfully reflect current network conditions. However, the packet rate in MMORPGs is very low, so the
packet interarrival times may be longer than one RTO. In this case, the cwnd is reset unnecessarily before the
next packet transmission, so the release of subsequent packets is restricted. Figure 5 shows the distributions of
the RTO, client packet interarrival times, and server packet interarrival times in our traces. For the client packet
interarrival times, the shaded area in the upper portion indicates that they are probably longer than the RTO. In
the traces, 12% of client packets and 18% of server packets encountered a cwnd reset before they were released.
The restart-after-idle-periods policy causes additional transmission delay. For example, suppose a player issues a
series of three commands, “sneak,” “move,” and “attack,” following a short period of thinking that is longer than
RTO. Since the cwnd is reduced to two packets, the third command cannot be released until the first command is
acknowledged. As a result, inappropriate resets of the congestion window have a negative effect on the interactivity
and responsiveness of MMORPGs.

E. Loss Recovery

To detect packet loss, TCP uses one of the following three strategies [3] (depending on the version of TCP):
1) retransmission timeout (RTO), i.e., a packet is deemed to have been dropped if the associated acknowledgment
is not received by the sender before RTO occurs; 2) the fast-retransmit mechanism, i.e., a packet is considered
lost if four successive and identical ack packets arrive without interruption by other packets; and 3) the selective
acknowledgment (SACK) mechanism [16], which enables the receiver to inform the sender about the packets
received; then, the sender only needs to retransmit the lost packets. Because the game servers we monitored did
not enable the SACK option, we focus on the performance analysis of the first two strategies.

The fast-retransmit algorithm is designed to alleviate the long delays incurred by detecting packet loss via
retransmission timeout. However, in our traces, only 0.08% of dropped server packets were detected by the
mechanism; that is, 99.92% of the lost packets were not detected by the game servers until RTO occurred. This
surprising result indicates that the fast-retransmit algorithm is ineffective in MMORPGs. According to our analysis,
the mechanism failed for two reasons: 1) insufficient duplicate acks; and 2) the accumulation of duplicate acks was
interrupted. As shown in Table III, the occurrence frequency is approximately the same in both cases. To trigger
the fast retransmit mechanism, a sender should receive at least three duplicate acks within an (RTO−RTT) interval
following a dropped packet. In other words, within that interval, the sender must release at least three additional
packets, each of which will elicit a duplicate ack. However, because the server packet rate is too low, it seems
unlikely that four packets could be released within that short period. To examine this conjecture, we compare
the distribution of (RTO − RTT) intervals with that of the server packet interarrival times detailed in Fig. 6. The
shaded area indicates that 34% of the server packet interarrival times were probably longer than their corresponding
(RTO − RTT) intervals; that is, there were no subsequent packets within that interval. Hence, fast retransmit was
not triggered because insufficient duplicate acks were generated.
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In the second case, the fast retransmit mechanism failed because the counting of duplicate acks was interrupted
by other packets. According to [3, 19] and the implementation of 4.4BSD, the definition of a series of duplicate
acks is strict in that each ack packet must not contain data, must have the same receiver window size, and must have
the same acknowledgement sequence number. By this definition, if a receiving host sends a data packet to a sender
that is waiting for more duplicate acks in that connection, the count of duplicate acks will be reset to zero. Thus,
the fast retransmit mechanism will not be triggered unless the counting of duplicate acks is not interrupted, even if
sufficient duplicate acks are released. As shown in Table III, most duplicate ack accumulations were interrupted by
data packets sent from the game clients. This happens because game traffic is bi-directional, so the game clients
may have data to release before sufficient duplicate acks are generated. Fig. 2 shows that the client packet rate is
generally higher than the server packet rate, which implies that client packets usually arrived at the servers before
sufficient duplicate acks were elicited by server packets. Consequently, the fast retransmit mechanism failed to
trigger in most cases.

Further evidence that fast retransmit is ineffective in MMORPGs, is provided by the transmission latency of
retransmitted packets. Theoretically, the latency of a dropped packet that is detected after retransmission timeout
occurs would have a latency equal to (RTO + RTT). As shown in Fig. 7, the distributions of the latency of
retransmitted packets and that of (RTO + RTT) are approximately equivalent. The result provides strong evidence
that most lost server packets were only detected and recovered after retransmission timeout occured.

We remark that while fast retransmit is shown to be ineffective, SACK is immune to traffic bi-directionality,
and only one ack packet elicited by a follow-up packet is sufficient to make the source host aware of the dropped
packets. Thus, we highlight the importance of the SACK algorithm in network games, and recommend that every
network game employing TCP should guarantee the SACK option is enabled at both ends.

IV. PROPOSED METHODOLOGY

Our analysis of TCP’s performance indicates that it is inappropriate for MMORPGs. Another transport protocol,
UDP, is widely used in real-time applications, such as video streaming and VoIP, but it cannot be applied to
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MMORPGs directly because some game messages require reliable transmission. In this section, we first discuss the
design of efficient transport strategies for MMORPGs. Then, we propose three content-based transport strategies
that provide an appropriate transmission guarantee for each type of game message in order to opportunistically
improve the packet delivery performance.

A. Prerequisites of MMORPG Transport Protocol Design

The transmission requirements of game packets are diverse because of the intrinsic characteristics of messages
contained in the packets. For example, some messages require in-order and reliable transmission, while the loss of
some messages is tolerable. For MMORPGs, we generally classify game messages generated by players into three
types: move, attack, and talk messages.

• Move messages report position updates when an avatar moves or goes to a new area. Since only the latest
location in the game play matters, the server simply discards out-of-date move messages.

• Attack messages correspond to an avatar’s combat actions when it engages in fights with opponents. Such
messages cannot be lost because each action will have some impact on the target. However, if several successive
attack messages describe the same combat action against the same target, out-of-order arrivals of these messages
can be tolerated, since they can be processed in a different order without affecting the final outcome.

• Talk messages convey the contents of conversations between players. To display the complete contents to
players in exactly the same order as they were typed, talk messages must be transmitted in order and reliably.

Intuitively, it is clear that transmitting game messages with short delays and low delay jitters leads to high
interactivity and responsiveness in the game play, as game messages can be processed more quickly and smoothly
by the receiving hosts. Based on the above descriptions of game messages, we define three levels of transmission
requirements for different types of messages.

• Under the strictest level, messages must be transmitted in order and reliably. For talk messages, this QoS level
must be guaranteed so that the contents of conversations can be displayed correctly.

• For messages that can be processed out of order, in-order delivery is not essential. For example, if a player
attacks an opponent with the same weapon, a series of repeat messages are generated. Since these messages
are semantically and visually equivalent, out-of-order processing will not adversely impact the outcomes of
the game play.

• Some types of messages do not require reliable transmission because they can be lost without affecting the
game’s logic. For example, the loss of most move messages is tolerable because they are designed to be
cumulative; that is, each new message will override the previous ones. However, the last message in a series
of move updates must be delivered to the server because it reports the avatar’s latest location.

B. Opportunistic Content-based Transport Strategies

To deliver game messages efficiently for different levels of transmission requirement without incurring high
overhead, we designed the following transport options.

• Multi-streaming: With this option, different types of game messages can be put into separate streams, each
of which processes the messages independently. In other words, each stream maintains the message order
individually so that a delayed message in one stream will not affect subsequent messages belonging to other
streams. Therefore, if different types of messages can be processed independently, we can put them into several
separate streams without generating incorrect game semantics.

• Optional Ordering: We have shown that in-order delivery incurs long delays and extensive delay jitters due to
inevitable packet loss. Optional ordering can reduce this overhead because it allows some types of messages to
be processed as soon as they are received without being buffered if their preceding messages have not arrived.

• Optional Reliability: With this option, messages that do not require reliable transmission can simply be
ignored if they are lost in the network. Therefore, the loss of a packet containing a non-critical message will
not prevent the processing of its subsequent messages. In addition, optional reliability can save the network
bandwidth used by unnecessary packet retransmission.

Next, we propose content-based transport strategies based on the above options. These strategies assign appropriate
levels of transmission guarantee to game messages according to their requirements.
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• MRO Strategy: MRO only uses multi-streaming (M); that is, it guarantees transmission reliability (R) as well
as packet ordering (O). Under this strategy, as game messages are classified into three types, namely move,
attack, and talk, we can employ separate streams to handle them.

• MR Strategy: MR implements both multi-streaming and optional ordering. This strategy provides two kinds
of streams: ordered streams and unordered streams. If messages are tolerant of out-of-order processing, they
can be transmitted via an unordered stream; otherwise, they should be put into an ordered stream.

• M Strategy: M combines all three options, that is, multi-streaming, optional ordering, and optional reliability.
Under this strategy, there are three kinds of streams: ordered and reliable streams, unordered and reliable
streams, and unordered and unreliable streams. Messages that must not be lost and must be processed in order
must be transmitted via ordered and reliable streams. On the other hand, if messages can be lost without
affecting the correctness of the game play, it is better to put them in unordered and unreliable streams. For
messages that require reliable transfer without strict order maintenance, unordered but reliable streams should
be used.

In the following section, we will use trace-driven experiments to evaluate the performance of the above strategies
for transporting game messages, and compare them with a number of existing transport protocols.

V. PERFORMANCE EVALUATION

In this section, we first discuss the transport protocols to be evaluated, namely TCP, UDP, DCCP, SCTP, and
the protocols based on our proposed strategies. We then describe the game traces used in the network simulations
and the setup of the experiment. In the performance evaluation part, we first assess the network performance of
the existing protocols. Then, to demonstrate the efficacy of our opportunistic content-based transport protocols, we
compare their performance with that of the existing protocols. Finally, we show how the improvement in network
performance affects players’ gaming experience.

In our evaluation, the end-to-end delay of a message is the difference between its sending time and its receiving
time observed at the application level. For brevity, we denote messages sent by game clients as client messages
and messages sent by the game server as server messages.

A. Description of Evaluated Protocols

• TCP: We have already discussed TCP and analyzed its performance in Section III.
• UDP: UDP is a connectionless transport protocol that does not provide in-order delivery, reliable transmission,

and congestion control. We expect that UDP will outperform the compared protocols in terms of end-to-end
delay and end-to-end delay jitter because it does not stipulate loss recovery and packet ordering, both of which
incur additional delays.

• DCCP: DCCP is designed for real-time multimedia applications that need a reasonable degree of control in the
presence of network congestion [15]. It implements two congestion control mechanisms: a TCP-like congestion
control (TCP-like) [10] and a TCP friendly rate control (TFRC) [11]. However, it is not reliable and it does not
provide in-order delivery. To the best of our knowledge, no previous studies have evaluated its performance
on MMORPGs. We employ DCCP with a TCP-like congestion control mechanism in our simulation.

• SCTP: SCTP [20] provides optional in-order transmission and multi-streaming. It can be flexibly configured
to satisfy different levels of transmission requirement. We employ a simple SCTP configuration that only
provides one ordered and reliable stream, which is the most common setting used by game developers. This
configuration is similar to that used in [14].

To evaluate the effect of our three content-based strategies, we use them to develop the following three content-
based transport protocols.

• PMRO implements the MRO strategy, which puts move, attack, and talk messages into three separate ordered
and reliable streams.

• PMR is based on the MR strategy. It transmits move and attack messages via two unordered and reliable streams
individually, while talk messages are put into an ordered and reliable stream.

• PM employs the M strategy, which transmits move messages via an unordered and unreliable stream, attack
messages via an unordered and reliable stream, and talk messages via an ordered and reliable stream.



11

TABLE IV
COMPARISON OF THE PROTOCOLS USED IN THE NETWORK SIMULATIONS

Protocol Multi- Ordered Reliable
streaming

UDP ✘ ✘ ✘
DCCP (TCP-like) ✘ ✘ ✘
TCP ✘ ✔ ✔

SCTP† ✘ ✔ ✔
PMRO ✔ ✔ ✔
PMR ✔ ▲ ✔
PM ✔ ▲ ▲

Description: ✘ indicates that the transport protocol does not support the feature, ✔ indicates that the transport protocol supports
the feature, and ▲ indicates that the transport protocol can support this feature optionally.
†: In our experiment, SCTP transports messages in one ordered and reliable stream.

TABLE V
ANGEL’S LOVE: ACTION TRACES PER USER

Game play time Number of messages

Total 22 hr. 7 min. 7, 482, 951
Average 4 hr. 37 min. 4, 080
Maximum 22 hr. 7 min. 169, 116
Minimum 1 hr. 201

The main difference between our protocols and existing protocols is that the latter transfer each type of message
in the same way, whereas our content-based transport protocols assign an appropriate delivery guarantee to each
type of message. The features of the protocols are summarized in Table IV.

B. Description of Game Trace

Angel’s Love is a mid-scale, TCP-based MMORPG that is popular in Taiwan. There may be thousands of players
online at any one time. The traces used in the experiment were collected by the staff of Angel’s Love. They
recorded the actions of all players during a specific period of time; that is, the traces are the action logs of the
players. The action-based traces consist of game messages representing the actions performed by the players as well
as the timestamp of each message. Based on the game-level action traces, we can perform network simulations
realistically and flexibly. For example, we can investigate the end-to-end delay and end-to-end delay jitter that
players experience in various network scenarios, such as different transport protocols, different numbers of clients,
and different network configurations. Such simulations cannot be conducted on network-level traffic traces because
we cannot change the environmental conditions and network settings associated with the traces. As summarized in
Table V, the action-based traces were collected in a period longer than 22 hours. Specifically, they contain more
than 7 million action messages from about 1, 800 players.

Recall that game messages are classified into three types: move, attack, and talk. On average, for each player, 84%
of the messages are move actions, 12% are related to attack actions, and 4% are talk messages. We believe these
results are generalizable to other MMORPGs because players move their avatars most of the time in MMORPGs.
In addition, although players may feel that they spend similar amounts of time on fighting and chatting, attack
messages easily outnumber talk messages. This is because an attack message is triggered by just a mouse click,
whereas a talk message contains several words or letters that require several keystrokes.

C. Experiment Setup

We conduct experiments with the ns-2 simulator, which is useful and therefore widely used in networking
researches. As shown in Figure 8, we deploy m + n + 3 nodes: a game server and two intermediate nodes that
serve as network routers; n nodes are the game clients, and the remaining m nodes are traffic nodes. The game
clients and traffic nodes are randomly connected to one of the routers. For the links between the routers and the
server, we set the bandwidth at 600 Kbps, and the propagation delay at 70 ms. For the links between the other
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Fig. 8. Experiment network topology
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Fig. 9. The mean end-to-end delays of existing transport protocols

nodes and the routers, the bandwidth varies between 64 Kbps and 128 Kbps, and the propagation delay is set at
70 ms. To simulate cross traffic on the Internet, 11 pairs of traffic nodes are configured to generate UDP traffic in
an exponential distribution with a sending rate of 500 Kbps. The cross traffic causes a 4% packet loss rate in the
network approximately.

We implement the game server and the game client modules to simulate communications between the server
and clients in MMORPGs. The game client module is trace-driven, so it can replay the action-based traces in the
simulated network. In other words, the client module regenerates and sends game messages based on the times and
the types of messages recorded in the traces. Meanwhile, the game server module tracks the locations of avatars
by the move messages reported by game clients. When a client sends the game server a message about the avatar’s
next action, the server responds to the client and, depending on the type of the action, notifies the target clients
related to the action (e.g., two players who are chatting) or other clients whose avatars are in the same zone (e.g.,
location updates).

We apply each of the discussed transport protocols to transport game messages. The number of clients is set
between 10 and 150. For each protocol, we run each setting for 1000 iterations, each of which simulates a different
client arrival pattern. Specifically, the client interarrival time is a uniform distribution with an interval between 0
and 1 second.

D. Comparison of Existing Protocols

We begin by investigating the mean end-to-end delays of transmitting game messages using the existing transport
protocols. As the number of game clients in the simulations varies from 10 to 150, we can examine the performance
under different network loads. Figure 9 shows that the mean end-to-end delay of server messages is more sensitive
to the number of clients than that of client messages. The reason is that after a new player joins the game, the
server needs to send out two additional messages: 1) messages for the new game client about the status of the other
avatars; and 2) messages related to the new avatar for existing clients. Therefore, the number of server messages
increases faster than linear growth as the number of clients increases. This effect is especially noticeable in the
case of TCP and SCTP because both protocols provide reliable and ordered transmission; therefore, the packet loss
caused by excessive messages causes long delays.

Next, we compare the mean end-to-end delay values under different protocols. As shown in Fig. 9, UDP always
outperforms the other three protocols, and TCP yields the worst performance in nearly all scenarios. The result
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Fig. 10. The mean end-to-end delay jitters of existing transport protocols
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Fig. 11. The mean end-to-end delays of TCP, UDP, SCTP, and our transport protocols

confirms our intuition that TCP’s guarantee of data delivery is too inflexible, so long delays are inevitable. On the
other hand, since UDP does not guarantee data reliability and in-order delivery, no additional delay will occur in
the transport level. In addition, DCCP(TCP-like) always achieves the second best performance, and SCTP yields
the third best. The performance of SCTP is similar to that of TCP because we employ an ordered and reliable
stream, which provides a transmission guarantee similar to that in TCP. DCCP(TCP-like) can be viewed as UDP
plus a congestion control mechanism, so its mean delays are very close to those of UDP. Our observation supports
the conjecture that the more functionalities a protocol provides, the worse the end-to-end delay experienced by
packets.

We also consider the mean end-to-end delay jitter incurred by different protocols, as shown in Fig. 10. The trends
in the results and the differences between the results of these protocols are very similar to those in Fig. 9, since a
high average end-to-end delay usually implies that the end-to-end delay may vary over a wide range.

E. Evaluation of Content-based Transport Protocols

We now compare the mean end-to-end delays of our proposed content-based transport protocols with those of
TCP, SCTP, and UDP, as shown in Figure 11. Overall, the trends of our protocols as the number of game clients
increases are similar to those of the compared protocols. We observe that the more flexible the strategies employed
by our protocols, the better the performance they achieve. PMRO uses three TCP streams to transmit different types
of messages so that the sequencing delays between different types of messages can be eliminated. Therefore, in
most of the scenarios, the mean delays under PMRO are lower than those in TCP. For PMR, move and attack messages
are transmitted via two separate streams with optional ordering, so its performance is better than that of PMRO. PM

achieves the best performance among our protocols because approximately 80% of move messages do not have
to be transmitted reliably and in order. This avoids a large number of unnecessary retransmissions and reduces
sequencing delays for non-critical move updates. As a result, the mean delay of PM is relatively close to that of
UDP. We also analyze the mean end-to-end delay jitter, as shown in Fig. 12. Again, the results are similar to those
for end-to-end delays, i.e., a high average end-to-end delay implies that the end-to-end delay jitter may be large.
The results indicate that our strategies reduce end-to-end delay as well as end-to-end delay jitter.

To emphasize the performance of our protocols, we normalize the mean end-to-end delays and the mean end-
to-end delay jitters of our transport protocols based on those of SCTP (upper bound) and UDP (lower bound). We
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Fig. 12. The mean end-to-end delay jitters of TCP, UDP, SCTP, and our transport protocols
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calculate the normalized score of the mean delay for each protocol by

(mean delays of SCTP) − (mean delays of the protocol)
(mean delays of SCTP) − (mean delays of UDP)

× 100.

The score of the mean delay jitter is calculated similarly. If a protocol has a high mean delay score, its performance
is relatively close to that of UDP in terms of the mean delay, while a low score indicates the performance is close
to that of SCTP. Figure 13 plots the scores of the mean delay for the scenarios with 70 clients and 140 clients.
Obviously, PM outperforms the other two protocols. Furthermore, we observe that our transport protocols achieve a
bigger improvement as the number of clients increases. The normalized scores of the mean delay jitter are shown
in Fig. 14. The results are similar to those in Fig. 13 because reducing the end-to-end delay further reduces the
end-to-end delay jitter effectively.

Finally, to examine the effect of providing different levels of transmission guarantee to different types of messages
by using PM, we plot the mean end-to-end delay of each type of message in Fig. 15. For the three types of messages,
the magnitudes of the delays they encountered correspond to the transmission guarantee assigned to them. Thus,
providing an appropriate guarantee for each game packet based on its content effectively minimizes end-to-end
delay and delay jitter.
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F. Improvement in User Satisfaction

Here, we consider how the improvement in network performance derived by our content-based strategies enhances
users’ game play satisfaction. In [6, 7], the authors provide an in-depth analysis of the relationship between network
quality and users’ game-playing time in MMORPGs. Degraded network QoS in terms of end-to-end delay, delay
jitter, and the packet loss rate significantly affect the gaming experience, so players quit games because they are
not satisfied. Based on the survival model used in [6, 7], we define the Game Satisfaction Index (GSI) as the level
of player satisfaction calculated by the following equation:

GSI ∝ exp((−1.6) × delay + (−9.2) × delay jitter + (−0.2) × log(loss rate)).

GSI indicates that the level of player satisfaction is proportional to the exponent of the weighted sum of certain
network metrics, where the weights reflect the effect of network impairment. With this equation, we compare the
improvement in user satisfaction with PM over TCP. In the simulations, when the number of clients is 150, the mean
delay and mean delay jitter of client traffic are, respectively, 208 ms and 52 ms in PM, and 285 ms and 177 ms in
TCP. The packet loss rate in PM is similar to that in TCP. The ratio of the player satisfaction levels of these two
transport protocols can be computed by exp((−1.6)× (0.208− 0.285) + (−9.2)× (0.052− 0.177)) ≈ 3.57, where
−1.6 and −9.2 are the coefficients of delay and delay jitter respectively. In other words, the reduction in delay
and delay jitter achieved by PM raises the GSI significantly. Specifically, it is 3.57 times higher than in the GSI for
TCP. That is, players have much better gaming experiences with PM as the underlying protocol, which implies that
they tend to spend much longer time in the game. The figure manifests that the proposed content-based transport
strategies can effectively raise player satisfaction levels in MMORPGs.

VI. CONCLUSION

We have analyzed the performance of TCP in MMORPGs based on real-life traces. The evaluation results
indicate that while TCP is a reliable transport protocol, using it to transmit all game packets degrades game’s
performance. Specifically, we have shown that TCP’s congestion control mechanism and the fast retransmit algorithm
are ineffective for MMORPGs. The performance problems are due to the following characteristics of game traffic:
1) tiny packets, 2) low packet rate, 3) application-limited traffic generation, and 4) bi-directional traffic. In addition,
since not every game message requires reliable transmission and strict in-order processing by the destination host,
both the loss recovery mechanism and the in-order delivery policy cause unnecessary transmission delays.

Having shown that TCP is unsuitable for MMORPGs, we propose three content-based transport strategies for
this genre of games. The purpose of our strategies is to provide appropriate levels of transmission guarantee that
exactly match the requirements of the game packets’ contents. Based on realistic game traces, we conducted network
simulations to evaluate the performance of our strategies and that of several existing protocols. The results indicate
that, the proposed strategies reduce end-to-end delay and end-to-end delay jitter significantly. We also show that the
improvement in network performance derived by our strategies can effectively raise the level of gaming satisfaction
among players. To implement our strategies, it is necessary to identify game packets according to the types of
contents. However, as these strategies are more efficient than non-content-based protocols, this additional task for
game developers is worthwhile because it will bring much better gaming experiences to players.
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